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1 Introduction

Given a matroid M , Elias, Proudfoot, and Wakefield [3] introduced the Kazhdan-
Lusztig polynomial PM(t) and Proudfoot, Xu, and Young [13] introduced the Z-polynomial
ZM(t). Quite recently, Ferroni, Nasr, and Vecchi [5] introduced the γ-polynomial γM(t)
of M . These polynomials have been shown to have a deep connection with algebraic
geometry, see [1, 3, 11–13]. They are also conjectured to possess further nice proper-
ties, one of which we are particularly interested in here is the log-concavity and the
real-rootedness [7, 13].

The famous Newton’s inequality says that if a polynomial
∑n

i=0 ait
i with real coeffi-

cients has only real roots then its coefficients are ultra log-concave, i.e.

a2i(
n
i

)2 ≥ ai+1(
n

i+1

) ai−1(
n

i−1

)
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for all 1 ≤ i ≤ n−1. We say that a finite sequence {ai}ni=0 is log-concave if the consecutive
numbers satisfy a2i ≥ ai−1ai+1 for any 1 ≤ i ≤ n − 1. It is not hard to see that ultra
log-concavity implies log-concavity.

The objective of this paper is to prove the ultra log-concavity of Z-polynomials and
γ-polynomials of uniform matroids.

Assume that m and d are positive integers. We denote by Um,d the uniform matroid
with rank d on m+ d elements. Suppose that

ZUm,d
(t) =

d∑
i=0

zm,d,it
i.

Recently, Xie and Zhang [14] confirmed the log-concavity of the Kazhdan-Lusztig poly-
nomials of uniform matroids. In this paper, we shall prove the ultra log-concavity of
Z-polynomials of uniform matroids ZUm,d

(t).

Theorem 1. For any positive integers m and d, the sequence {zm,d,i}di=0 is ultra log-
concave.

In this paper, we also study the γ-positivity of uniform matroids. A polynomial
f(t) =

∑d
i=0 ait

i is said to be palindromic if ai = ad−i for any 0 ≤ i ≤ d. It is known that
if f(t) ∈ Z[t] is a palindromic polynomial of degree d, then there exists integer numbers
γ0, . . . , γb d2c such that

f(t) =

b d2c∑
i=0

γit
i(1 + t)d−2i. (1)

Ferroni, Nasr, and Vecchi [5] defined the γ-polynomial associated to f(t) by

γf (t) =

b d2c∑
i=0

γit
i.

A palindromic polynomial f(t) of degree d is defined to be γ-positive if all the coefficients
of γf (t) are non-negative. Since the Z-polynomial of a matroid is palindromic, Ferroni,
Nasr, and Vecchi [5] introduced the γ-polynomial of a matroid M to be the polynomial

γM(t) = γ(ZM , t).

They conjectured that for any matroid M the polynomial γM(t) has non-negative coeffi-
cients and confirmed it for uniform matroids and sparse paving matroids. This conjecture
has been completely resolved by Ferroni, Matherne, Stevens, and Vecchi [4] recently.
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Lemma 2 ([5, Theorem 5.9]). For any positive integers m and d, the uniform matroid
Um,d is γ-positive. In addition, the coefficient of each degree i > 0 in γUm,d

(t) is given as
follows:

rm,d,i =
1

d− i

(
d− i
i

) d−1∑
j=i

(d− j)
(
j − 1

i− 1

)(
m+ j − 1

j

)
.

In this paper, we give an alternative expression for rm,d,i and a mysterious connection
with the Kazhdan-Lusztig polynomials of Um,d.

Theorem 3. For any positive integers m, d and 1 ≤ i ≤ bd
2
c, we have

rm,d,i =
d!

i!(d− 2i)!(i− 1)!

m−1∑
h=0

(
h+d
h

)
(h+ i)(h+ i+ 1)

. (2)

Based on (2), we prove the following result.

Theorem 4. For any positive integers m and d, the polynomial γUm,d
(t) is ultra log-

concave.

The outline of this paper is organized as follows. We prove Theorem 1 in Section 2
by using a computer algebra system. In Section 3, we prove Theorem 3 and Theorem 4.
In Section 4, we give a new proof of the γ-positivity for sparse paving matroids as an
application of Theorem 3.

2 Proof of Theorem 1

We prove Theorem 1 by using a computer algebra system through the following ideas.
Recall that Gao, Lu, Xie, Yang, and Zhang [6] gave a formula for zm,d,i as follows,

zm,d,i =

(
d+m
i+m

)(
d+m
i

)(
d+m
m

) m−1∑
h=0

i(h−m+ 1) +m

(h+ 1)m

(
h+ i− 1

h

)(
d+ h− i

h

)
. (3)

Let

pd,i =

(
d+m
i+m

)(
d+m
i

)(
d+m
m

)
and

qn,i =
m−1∑
h=0

i(h−m+ 1) +m

(h+ 1)m

(
h+ i− 1

h

)(
n+ h

h

)
.

For the convenience, we ignore the m index in pd,i and qn,i. Consequently,

zm,d,i = pd,iqd−i,i.
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As the ultra log-concavity of pd,i is easy to check, the key ingredient of our proof is
the following lemma, which confirms the log-concavity of qd−i,i.

Lemma 5. For any positive integers m, i, d with 2 ≤ i ≤ d− 2, we have

q2d−i,i ≥ qd−i−1,i+1qd−i+1,i−1.

Letting n = d− i, we may rewrite Lemma 5 as follows: For any positive integers i ≥ 2
and n ≥ 2, we have

q2n,i ≥ qn−1,i+1qn+1,i−1. (4)

Our proof of (4) is similar to the proof of log-concavity of Kazhdan-Lusztig polynomials
of uniform matroids by Xie and Zhang [14], which is inspired by Kauers and Paule’s
computer proof of Moll’s log-concavity conjecture [9].

The rest of this section is organized as follows. We first give some recurrence rela-
tions of qn,i in Subsection 2.1. We next estimate upper and lower bounds of qn,i

qn−1,i
in

Subsection 2.2. In Subsection 2.3, we convert (4) into three inequalities and prove them
respectively. Finally, we complete the proof of Lemma 5 and Theorem 1 .

2.1 Recurrence relations of qn,i

In this subsection we give some recurrence relations of qn,i, which will be used later.

In order to obtain the required recurrence relations we use the package Holonomic-
Functions† by Koutschan [10] for Mathematica.

Lemma 6. For any positive integers m, i and n, we have

qn+1,i =
−(n− 1)(m+ n)qn−1,i + (m(n− 1) + 2n2 + i(m+ n− 1)) qn,i

n(n+ i+ 1)
, (5)

qn−1,i+1 =
(1 + i− n)qn−1,i + (n− 1)qn,i

i
, (6)

qn−1,i−1 =
(i2 +m(n− 2) + (n− 1)2 + i(m+ n− 2)) qn−1,i − (n− 1)(i+ n)qn,i

(i− 1)(m+ i)
, (7)

qn,i+1 =
−(n− 1)(m+ n)qn−1,i + (i2 + i(m+ n) + (n− 1)(m+ n)) qn,i

i(n+ i+ 1)
. (8)

†The HolonomicFunctions package can be downloaded at https://www3.risc.jku.at/research/
combinat/software/ergosum/RISC/HolonomicFunctions.html.

4

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html


Proof. The command Annihilator[expr] can compute annihilating operators for the ex-
pression expr.

In[1]:= ann = Annihilator[Sum[
i(h−m + 1) + m

(h + 1)m
Binomial[i − 1 + h, h]Binomial[n +

h, h], {h, 0,m− 1}], {S[i], S[n]}]

Out[1]= {−iSi+nSn+(i−n), (1+n)(2+i+n)S2
n+(−2−i(m+n)−n(4+m+2n))Sn+n(1+m+n)}

Here Sn (respectively Si) denotes the forward shift in n (respectively i).

We use the OreReduce command of Koutschan’s package to prove the required re-
currence relations. We take (6) as an example to demonstrate how OreReduce works.
We first replace n− 1 with n in (6). Thus, it follows that

iqn,i+1 − nqn+1,i − (i− n)qn,i = 0, (9)

We need to prove that the Ore polynomial iS[i]− nS[n]− (i− n) modulo the ideal ann
is zero. This can be verified by the following lines.
In[2]:= OreReduce [iS[i]− nS[n]− (i− n), ann]

Out[2]= 0

Similarly, we can prove the equations (5), (7) and (8) by the following lines.
In[3]:= OreReduce

[
(n + 1)(n + i + 2)S[n]2 + n(m + n + 1)− (mn+2(n+1)2 + i(m+

n)) S[n], ann]

Out[3]= 0

In[4]:= OreReduce
[
i(m + i + 1)− ((i + 1)2 + m(n− 1) + n2 +(i+1)(m+n−1))S[i]+

n(i + n + 2)S[n]S[i], ann ]

Out[4]= 0

In[5]:= OreReduce [i(n + i + 2)S[n]S[i] + n(m + n + 1)− (i2 + i(m + n + 1) + n(m +
n + 1))S[n], ann ]

Out[5]= 0

Now all the required recurrence relations have been obtained. This completes the
proof.

2.2 Bounds of qn,i
qn−1,i

In this subsection we estimate the upper and lower bounds of qn,i

qn−1,i
.
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To present the bounds of qn,i

qn−1,i
, we let

X(n, i) =
1− 2m− 3n+mn+ 2n2 + i(m+ n− 3) +

√
∆1(n, i)

2(n− 1)(i+ n)
,

and

Y (n, i) =
i(m+ n− 2) + (n− 1)(m+ 2n+ 1) +

√
∆2(n, i)

2(n− 1)(n+ i+ 1)
,

where

∆1(n, i) = 2m(n− 1)
(
i2 + (i− 1)m+ 1

)
+ (n− 1)2(i+m− 1)2 + (m− i(m− 2))2

and

∆2(n, i) = i2(m+ n− 2)2 + 2i(m− 1)(n− 1)(m+ n+ 2) + (m− 1)2(n− 1)2.

Lemma 7. For any positive integers m, i, and n ≥ 2, we have

X(n, i) ≤ qn,i
qn−1,i

≤ Y (n, i). (10)

Proof. Fixing i ≥ 1, we prove this lemma by induction on n. For the case n = 2, we need
to show

X(2, i) ≤ q2,i
q1,i
≤ Y (2, i).

By the definition of qn,i, we obtain

q1,i =
i+m

i(i+ 1)

(
i+m− 1

m

)
and

q2,i =
(i+m)(im+ 2)

i(i+ 1)(i+ 2)

(
i+m− 1

m

)
.

Thus
q2,i
q1,i

=
im+ 2

i+ 2
.

On the other hand, X(2, i) and Y (2, i) can be expressed as follows,

X(2, i) =
i(m− 1) + 3 +

√
i2 (m2 − 2m+ 5) + 2i(3m− 1) + 1

2(i+ 2)

and

Y (2, i) =
im+m+ 5 +

√
(im+m+ 5)2 − 4(i+ 3)(m+ 2)

2(i+ 3)
.
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Thus, we just need to prove

i(m− 1) + 3 +
√
i2 (m2 − 2m+ 5) + 2i(3m− 1) + 1

2(i+ 2)
≤ im+ 2

i+ 2
(11)

≤
im+m+ 5 +

√
(im+m+ 5)2 − 4(i+ 3)(m+ 2)

2(i+ 3)
. (12)

This inequality can be easily proved directly, but we use a computer algebra to prove
it here. Here, we introduce the Mathematica command CylindricalDecomposition [8].
The Cylindrical Algebraic Decomposition (CAD) algorithm was invented by Collins [2]
in order to do quantifier elimination over the reals: given a quantified formula, it finds a
formula without quantifiers which is equivalent over the reals to the input formula.
In[6]:= ∆1[n_, i_] := 2m(n−1)

(
i2 + (i− 1)m + 1

)
+(n−1)2(i+m−1)2 +(m− i(m−

2))2;

In[7]:= X[n_, i_] :=
1−2m−3n+mn+2n2+i(m+n−3)+

√
∆1[n,i]

2(n−1)(i+n)
;

In[8]:= ∆2[n_, i_] := i2(m+n− 2)2 + 2i(m− 1)(n− 1)(m+n+ 2) + (m− 1)2(n− 1)2;

In[9]:= Y [n_, i_] :=
i(m+n−2)+(n−1)(m+2n+1)+

√
∆2[n,i]

2(n−1)(n+i+1)
;

In[10]:= CylindricalDecomposition [ Implies [ m ≥ 1&&i ≥ 1, X[2, i] ≤ (im + 2)/(i +
2) ≤ Y [2, i] ] , {m, i} ]

Out[10]= True

Therefore, the desired inequality holds for n = 2.

Assume that the inequality holds for the general n, namely,

X(n, i) ≤ qn,i
qn−1,i

≤ Y (n, i).

We proceed to prove the desired inequality holds for n + 1 as well. It follows from (5)
that

qn+1,i

qn,i
=
−(n− 1)(m+ n)qn−1,i

n(n+ i+ 1)qn,i
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)
. (13)

Together with −(n− 1) < 0 we obtain

−(n− 1)(m+ n)

n(n+ i+ 1)

1

X(n, i)
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)
≤ qn+1,i

qn,i
(14)

≤ −(n− 1)(m+ n)

n(n+ i+ 1)

1

Y (n, i)
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)
. (15)
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So we need to show that the left side of (14) is more than or equal to X(n+ 1, i) and the
right side of (15) is less than or equal to Y (n+ 1, i).

In[11]:=
−(n− 1)(m + n)

n(n + i + 1)X[n, i]
+

m(n− 1) + 2n2 + i(m + n− 1)

n(n + i + 1)
≥ X[n + 1, i];

In[12]:= CylindricalDecomposition [Implies [m ≥ 1&&n ≥ 2&&i ≥ 1,%] , {i, n,m}]

Out[12]= True

In[13]:=
−(n− 1)(m + n)

n(n + i + 1)Y [n, i]
+

m(n− 1) + 2n2 + i(m + n− 1)

n(n + i + 1)
≤ Y [n + 1, i];

In[14]:= CylindricalDecomposition [Implies [m ≥ 1&&n ≥ 2&&i ≥ 1,%] , {i, n,m}]

Out[14]= True

This completes the proof.

2.3 Proof of Lemma 5 and Theorem 1

To prove Lemma 5, we divide the inequality (4) into

q2n,i ≥ qn,i+1qn,i−1 (16)

and
qn,i+1

qn−1,i+1

≥ qn,i
qn−1,i

≥ qn+1,i

qn,i
≥ qn+1,i−1

qn,i−1

. (17)

First, we prove (16).

Lemma 8. For any positive integers i ≥ 2, n ≥ 2 and m, we have q2n,i ≥ qn,i+1qn,i−1.

Proof. For the convenience of notation, we prove q2n−1,i ≥ qn−1,i+1qn−1,i−1 for n ≥ 2.

Through the recurrence relations (6) and (7), we get that

q2n−1,i − qn−1,i+1qn−1,i−1 =
(n− 1)q2n−1,i

i(i− 1)(i+m)
fn,i

(
qn,i
qn−1,i

)
.

Let

fn,i(x) = (n− 1)(i+ n)x2 − (i(m+ n− 3) + (m− 3)n− 2m+ 2n2 + 1)x

+ (−i+m(−2 + n) + (−1 + n)2).

By a direct computation, we find that fn,i(x) is just ∆1(n, i) defined in Section 2.2. Recall
that

∆1(n, i) = 2m(n− 1)
(
i2 + (i− 1)m+ 1

)
+ (n− 1)2(i+m− 1)2 + (m− i(m− 2))2.
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Since n ≥ 2 and i ≥ 2, it is obvious to see that ∆1(n, i) > 0. Therefore, fn,i(x) has two
distinct zeros, which are

x1(n, i) =
1− 2m− 3n+mn+ 2n2 + i(m+ n− 3)−

√
∆1(n, i)

2(n− 1)(i+ n)
,

x2(n, i) =
1− 2m− 3n+mn+ 2n2 + i(m+ n− 3) +

√
∆1(n, i)

2(n− 1)(i+ n)
.

We find that x2(n, i) = X(n, i). Then since the leading coefficient of fn,i(x) is positive, it
follows from Lemma 7 that

x2(n, i) ≤
qn,i
qn−1,i

,

which completes the proof.

Lemma 9. For any positive integers m and n ≥ 2, we have
qn,i+1

qn−1,i+1

≥ qn,i
qn−1,i

(i ≥ 1), (18)

qn+1,i

qn,i
≥ qn+1,i−1

qn,i−1

(i ≥ 2). (19)

Proof. First, we prove the inequality (18), namely

qn,i+1qn−1,i − qn,iqn−1,i+1 ≥ 0.

The inequality(19) can be deduced from (18).

By the recurrence relations (6) and (8), we have

i(n+ i+ 1)(qn,i+1qn−1,i − qn,iqn−1,i+1)

= − (n− 1)(n+ i+ 1)q2n,i + (i(m+ n− 2) + (n− 1)(m+ 2n+ 1))qn,iqn−1,i

− (n− 1)(m+ n)q2n−1,i.

Let

gn,i(x) = −(n−1)(n+ i+ 1)x2 + (i(m+n−2) + (n−1)(m+ 2n+ 1))x− ((n−1)(m+n)).

Thus
i(n+ i+ 1)(qn,i+1qn−1,i − qn,iqn−1,i+1) = q2n−1,ign,i

(
qn,i
qn−1,i

)
.

Since i(n + i + 1) > 0 and q2n−1,i > 0, we just need to show that gn,i(
qn,i

qn−1,i
) ≥ 0. We can

directly verify that the discriminant of gn,i(x) is equal to ∆2(n, i) defined in Section 2.2.
Recall that

∆2(n, i) = i2(m+ n− 2)2 + 2i(m− 1)(n− 1)(m+ n+ 2) + (m− 1)2(n− 1)2,
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which is manifestly positive since m ≥ 1 and n ≥ 2. Then gn,i(x) has two distinct zeros
y1(n, i) and y2(n, i), which are

y1(n, i) =
i(m+ n− 2) + (n− 1)(m+ 2n+ 1)−

√
∆2(n, i)

2(n− 1)(n+ i+ 1)
,

y2(n, i) =
i(m+ n− 2) + (n− 1)(m+ 2n+ 1) +

√
∆2(n, i)

2(n− 1)(n+ i+ 1)
.

Since the leading coefficient of gn,i(x) is negative, to make gn,i(
qn,i

qn−1,i
) ≥ 0 hold, we next

prove
y1(n, i) ≤

qn,i
qn−1,i

≤ y2(n, i).

Here y2(n, i) = Y (n, i), and we have already proved that X(n, i) ≤ qn,i

qn−1,i
≤ Y (n, i) in

Lemma 7. Hence, we get qn,i

qn−1,i
≤ y2(n, i). It remains to show that y1(n, i) ≤ X(n, i).

In[15]:= y1[n_, i_]:= i(m+n−2)+(n−1)(m+2n+1)−
√

∆2[n,i]

2(n−1)(n+i+1)
;

In[16]:= y1[n, i] ≤ X[n, i];

In[17]:= CylindricalDecomposition [Implies[m ≥ 1&&n ≥ 2&&i ≥ 1,%], {i, n,m}]

Out[17]= True

This completes the proof.

Lemma 10. For any positive integers m, i, n ≥ 2, we have

qn,i
qn−1,i

≥ qn+1,i

qn,i
. (20)

Proof. By (13), the desired inequality (20) is converted to

qn,i
qn−1,i

≥ −(n− 1)(m+ n)qn−1,i

n(n+ i+ 1)qn,i
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)
.

Multiplying both sides of the above inequality by qn,i

qn−1,i
, we need to prove that(

qn,i
qn−1,i

)2

≥ −(n− 1)(m+ n)

n(n+ i+ 1)
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)

(
qn,i
qn−1,i

)
.

Let

z1(n, i) =
m(n− 1) + 2n2 + i(m+ n− 1)−

√
∆3(n, i)

2n(n+ i+ 1)

10



and

z2(n, i) =
m(n− 1) + 2n2 + i(m+ n− 1) +

√
∆3(n, i)

2n(n+ i+ 1)

be the two real zeros of the equation

x2 − (n− 1)(m+ n)

n(n+ i+ 1)
+
m(n− 1) + 2n2 + i(m+ n− 1)

n(n+ i+ 1)
x = 0,

where ∆3(n, i) = i2(m+ n− 1)2 + 2im (m(n− 1) + n2 + 1) + (−mn+m+ 2n)2.

Recall that, we have proven qn,i

qn−1,i
≥ X(n, i). It remains to show thatX(n, i) ≥ z2(n, i).

This follows from the following lines.
In[18]:= ∆3[n_, i_] := i2(m + n− 1)2 + 2im

(
m(n− 1) + n2 + 1

)
+ (m + 2n−mn)2;

In[19]:= z2[n_, i_]:=
m(n− 1) + 2n2 + i(m + n− 1) +

√
∆3[n, i]

2n(n + i + 1)
;

In[20]:= X[n, i] ≥ z2[n, i];

In[21]:= CylindricalDecomposition [Implies[m ≥ 1&&n ≥ 2&&i ≥ 1,%], {i, n,m}]

Out[21]= True

This completes the proof.

Now, we prove the main result of this section.

Proof of Lemma 5. We prove this lemma by verifying the inequality (4). By Lemma 9,
we have

qn,i+1

qn−1,i+1

≥ qn,i
qn−1,i

and
qn+1,i

qn,i
≥ qn+1,i−1

qn,i−1

.

By Lemma 10, we can get
qn,i
qn−1,i

≥ qn+1,i

qn,i
.

Therefore, we have
qn,i+1

qn−1,i+1

≥ qn,i
qn−1,i

≥ qn+1,i

qn,i
≥ qn+1,i−1

qn,i−1

.

Then
qn,i+1

qn−1,i+1

≥ qn+1,i−1

qn,i−1

,

that is
qn,i+1qn,i−1 ≥ qn−1,i+1qn+1,i−1.
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By Lemma 8, we have
q2n,i ≥ qn,i+1qn,i−1.

Hence, together with these two inequalities we get

q2n,i ≥ qn−1,i+1qn+1,i−1.

This completes the proof of Lemma 5.

We proceed to prove Theorem 1.

Proof of Theorem 1. We first prove the ultra log-concavity of pd,i, which is equivalent to
the following inequality,

(d− i)i p2d,i
(d− i+ 1)(i+ 1) pd,i+1pd,i−1

=
(m+ i+ 1)(d− i+m+ 1)

(m+ i)(d− i+m)
≥ 1.

By Lemma 5, we have
q2d−i,i ≥ qd−i−1,i+1qd−i+1,i−1

for 2 ≤ i ≤ d − 2. Since zm,d,i = pd,iqd−i,i, we obtain the ultra log-concavity of zm,d,i for
2 ≤ i ≤ d− 2.

It suffices to prove the ultra log-concavity of zm,d,i for i = 1 and i = d − 1. As the
Z-polynomial is a palindromic polynomial, i.e. zm,d,i = zm,d,d−i for any 0 ≤ i ≤ d, we
remain to show that (

zm,d,1(
d
1

) )2

≥ zm,d,2(
d
2

) zm,d,0(
d
0

) .

By using Gosper’s algorithm or Mathematica, it is easy to see that

zm,d,0 = 1, zm,d,1 =

(
d+m

m+ 1

)
, zm,d,2 =

(d− 2)m+ 2

2

(
d+m

m+ 2

)
.

Let

φ(d,m) =
z2m,d,1

zm,d,0zm,d,2

·
(
d
2

)(
d
1

)2 =
(m+ 2)(d+m)!

d!(m+ 1)!((d− 2)m+ 2)
.

We have φ(d, 0) = 1 and

φ(d,m+ 1)

φ(d,m)
=

(m+ 3)(d+m+ 1)((d− 2)m+ 2)

(m+ 2)2((d− 2)m+ d)
≥ 1

by the following lines.
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In[22]:= CylindricalDecomposition [ForAll [{m,d},m ≥ 1&&d ≥ 2,
(m + 3)(d + m + 1)((d− 2)m + 2)

(m + 2)2((d− 2)m + d)
≥ 1

]
, {d,m}

]
Out[22]= True

By induction on m, we show that φ(d,m) ≥ 1 holds for any nonnegative integer m. This
completes the proof.

3 The ultra log-concavity of the γ-polynomials of uni-
form matroids

In this section, we shall first prove Theorem 3, which gives an alternative formula for
rm,d,i. Then, we prove the ultra log-concavity of the γ-polynomials of uniform matroids.

Proof of Theorem 3. In order to prove (2), it suffices to prove

1

d− i

(
d− i
i

) d−1∑
j=i

(d− j)
(
j − 1

i− 1

)(
m+ j − 1

j

)
=

d!

i!(d− 2i)!(i− 1)!

m−1∑
h=0

(
h+d
h

)
(h+ i)(h+ i+ 1)

,

which is equivalent to

d−1∑
j=i

(d− j)(d− i− 1)!(j +m− 1)!

j(m− 1)!(j − i)!
=

m−1∑
h=0

(d+ h)!

h!(h+ i)(h+ i+ 1)
. (21)

Let L(m) and R(m) be the left side and the right side of (21) respectively. It is
obvious to see that R(1) = d!

i(i+1)
and R(m+ 1)− R(m) = (d+m)!

m!(m+i)(m+i+1)
. We shall prove

the sequence L(m) have the same initial value and difference with respect to m.

For the initial case m = 1, we can easily check

d−1∑
j=i

(d− j)(d− i− 1)!(j − 1)!

(j − i)!
=

d!

i(i+ 1)

holds by using Gosper’s algorithm or Mathematica.

Next we prove L(m+ 1)− L(m) = d+m)!
m!(m+i)(m+i+1)

via the following line.

In[23]:= Annihilator[Sum[
((d− j)(d− i− 1)!(j + m− 1)!)

(j(m− 1)!(j − i)!)
, {j, i, d− 1}], {S[m]},

Inhomogeneous→ True];
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In[24]:= FullSimplify[%]

Out[24]= {{S[m]− 1}, {− Gamma[1 + d+m]

(i+m)(1 + i+m)Gamma[1 +m]
}}

This completes the proof of (21).

Proof of Theorem 4. According to the definition of the ultra log-concavity, it suffices to
prove that (

rm,d,i(
d
i

) )2

≥ rm,d,i+1(
d

i+1

) rm,d,i−1(
d

i−1

) .

Recall that Xie and Zhang [14, p2] studied the following numbers

ad,i =
1

(i− 1)!

m−1∑
h=0

(
h+d
h

)
(h+ i)(h+ i+ 1)

,

which are used to express the coefficients of Kazhdan-Lusztig polynomials of uniform
matroids.

By (2), we have

rm,d,i(
d
i

) =
d!(

d
i

)
i!(d− 2i)!

ad,i.

Thus we shall prove(
d!

i!(d− 2i)!
(
d
i

)ad,i)2

≥ d!

(i+ 1)!(d− 2i− 2)!
(

d
i+1

)ad,i+1
d!

(i− 1)!(d− 2i+ 2)!
(

d
i−1

)ad,i−1,

which is equivalent to

(d− 2i+ 1)(d− 2i+ 2)(d− i)
(d− 2i− 1)(d− 2i)(d− i+ 1)

a2d,i ≥ ad,i+1ad,i−1.

Since

(d− 2i+ 1)(d− 2i+ 2)(d− i)− (d− 2i− 1)(d− 2i)(d− i+ 1)

=3d2 + d(3− 8i) + 4(i− 1)i

≥12i2 + 2i(3− 8i) + 4(i− 1)i

=2i ≥ 0,

the desired inequality follows from the log-concavity of (ad,i)i, namely,

a2d,i ≥ ad,i+1ad,i−1,

which was proved by Xie and Zhang [14, Lemma 7]. This completes the proof.
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4 The γ-positivity of sparse paving matroids revised

In this section, we use our new formula to give a new proof of the γ-positivity of sparse
paving matroids.

A matroid M of rank d is sparse paving if and only if each d-subset of E(M) is either
a basis or a circuit-hyperplane.

Lemma 11 ([5, Proposition 5.14]). If M is a sparse paving matroid of rank d and cardi-
nality m+ d having exactly λ circuit-hyperplanes, then

γM(t) = γUm,d
(t)− λ gd,d(t), (22)

where the number of circuit-hyperplanes λ of M satisfies

λ ≤
(
m+ d

d

)
min

{
1

d+ 1
,

1

m+ 1

}
(23)

and

gd,d(t) =

b d2c∑
i=1

2

d− i− 1

(
d− i− 1

i− 1

)(
d− 1

i+ 1

)
ti. (24)

Now that we have a new expression for rm,d,i, we next use it to reprove the γ-positivity
for sparse paving matroids.

Theorem 12 ([5, Theorem 5.15]). Sparse paving matroids are γ-positive.

Proof. We will assume throughout the proof that M is a sparse paving matroid of rank d
and cardinality m+ d having exactly λ circuit-hyperplanes. By (22), we have

γM(t) = γUm,d
(t)− λ · gd,d(t).

Let us fix 1 ≤ i ≤
⌊
d
2

⌋
. Proving that [ti] γM(t) is non-negative amounts to show that

rm,d,i =
[
ti
]
γUm,d

(t) ≥ λ
[
ti
]
gd,d(t).

Let cm,d = max(m, d) + 1. By (23), we obtain that λ ≤ 1
cm,d

(
m+d
d

)
. Then it suffices to

prove

d!

i!(d− 2i)!(i− 1)!

m−1∑
h=0

(
d+h
h

)
(h+ i)(h+ i+ 1)

≥ 2

cm,d(d− i− 1)

(
m+ d

d

)(
d− i− 1

i− 1

)(
d− 1

i+ 1

)
,

which can be reduced to
m−1∑
h=0

(d+ h)!

(h+ i)(h+ i+ 1)h!
≥ 2(m+ d)!

cm,dm!(i+ 1)d
.
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This can be obtained from the following inequality

(m+ d)!

(m+ i)(m+ i+ 1)m!
≥ 2(m+ d+ 1)!

cm+1,d(m+ 1)!(i+ 1)d
− 2(m+ d)!

cm,dm!(i+ 1)d
,

which is equivalent to

d(i+ 1)

2(m+ i)(m+ i+ 1)
≥ m+ d+ 1

cm+1,d(m+ 1)
− 1

cm,d

. (25)

We prove (25) by using the Cylindrical Algebraic Decomposition algorithm.
In[25]:= CylindricalDecomposition [ForAll [{m,d, i},m ≥ 1&&i ≤ d/2&&(i ≥ 2‖i = 1),

d(i + 1)

2(m + i)(m + i + 1)
≥

m + d + 1

Max[m + 1, d](m + 1)
−

1

Max[m,d]

]
, {d, i,m}

]
Out[25]= True

This completes the proof.

Remark 13. We write i ≥ 1 as i ≥ 2 or i = 1 in In[22], since the inequality (25) does
not hold for m = 2, d = 3, i = 3/2.
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