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1 Introduction

The main purpose of this paper is to prove certain enumeration formulae, conjectured by
Egge [7], about pattern-avoiding Fishburn permutations. A permutation of length n is a rear-
rangement of the set [n] := {1, 2, . . . , n}. We let Sn denote the set of permutations of [n]. A
permutation π1π2 · · ·πn ∈ Sn avoids a pattern p = p1p2 · · · pk ∈ Sk if there is no subsequence
πi1πi2 · · ·πik such that πij < πim if and only if pj < pm. Two permutations σ and τ are Wilf-
equivalent if for all n, the number of permutations of Sn which avoid σ is the same as the number
of permutations of Sn which avoid τ . We refer the reader to the book by Kitaev [10] for a
comprehensive introduction to the theory of permutation patterns.

The Fishburn pattern is a special case of bivincular patterns introduced in [2]. A permu-
tation π = π1π2 · · ·πn avoids if there are no indices i < j such that πiπi+1πj form a copy of
the pattern 231 and πi = πj + 1. Fishburn permutations are -avoiding permutations.

We adopt the notation Fn(σ1, . . . , σk) to represent the set of Fishburn permutations of length
n that simultaneously avoid the patterns σ1, . . . , σk. For instance, Fn(321, 1243) represents the
set of Fishburn permutations of length n that avoid both the patterns 321 and 1243.

Bousquet-Mélou, Claesson, Dukes, and Kitaev [2] gave bijections between Fishburn permu-
tations and ascent sequences, unlabeled (2 + 2)-free posets, and linearized chord diagrams. They
also proved that the generating function for Fishburn permutations is

1 +
∑
n≥1

n∏
i=1

(1− (1− t)i).

For the literature related to the Fishburn numbers, see [1, 8, 11,16].
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Recently, Cerbai and Claesson [3] developed the theory of the transport of patterns from
Fishburn permutations to (modified) ascent sequences. The pattern avoidance on (modified)
ascent sequences has been discussed recently by Duncan and Steingrímsson [6], and Cerbai [4,5].

In this paper, we are concerned with enumeration of Fishburn permutations which avoid
specific classical patterns. Gil and Weiner [9] studied avoidance of classical patterns of size 3 or
4 on all and indecomposable Fishburn permutations. Egge [7] settled one of the conjectures in [9]
and enumerated Fishburn permutations that avoid specific classical pattern sets of size 3 or 4.
Moreover, Egge [7] proposed several conjectures on pattern-avoiding Fishburn permutations.

We prove Conjectures 10.14 and 10.17 in [7] that involve a total of 15 enumerative results.
Table 1 is a summary of the main results in this paper. Notably, the formulas presented in the
last four lines in Table 1 have not been found or conjectured before, and we use them to prove
Egge’s conjectures.

The following lemma shows that all the enumeration results discussed in this paper can be
categorized into two types depending on the position of the smallest element 1.

Lemma 1.1. Let π ∈ Fn(321). Then either π1 = 1 or π2 = 1.

Proof. We shall prove this lemma by contradiction. Suppose that the element 1 does not occupy
one of the first two positions. Let π1 = x and π2 = y. If x > y then x, y, and 1 form a copy of the
pattern 321. If x < y then x − 1 must appear to the right of y. This implies that the elements
x, y, and x − 1 form a copy of the Fishburn pattern . Both cases lead to contradictions.
Thus, we can conclude that π1 = 1 or π2 = 1.

Since all cases of interest to us involve 321-avoiding Fishburn permutations, we classify the
proofs of the enumeration results into two types based on Lemma 1.1 and deal with them sep-
arately. Throughout the paper we shall denote the set {π ∈ Fn(321, σ1, . . . , σk) : πi = 1} by
F

(i)
n (321, σ1, . . . , σk) for i ∈ {1, 2}.

The following lemma shows that some pattern-avoiding Fishburn permutations can be de-
duced from classical results. We shall use it to prove Lemmas 2.2, 2.7, 3.10, 4.2, and Theorem 3.4.

Lemma 1.2. For each pattern σ ∈ {132, 213, 312, 3142}, we have

Fn(321, σ) = Sn(231, 321, σ).

Proof. The inclusion Sn(231, 321, σ) ⊆ Fn(321, σ) is trivial since the -pattern is contained
in the 231-pattern. To prove the opposite inclusion, it suffices to show that if a permutation
π ∈ Fn(321, σ) avoids then π avoids 231. We consider its contrapositive form. Let a, b, c be
a copy of 231, as illustrated in the picture below, satisfying that a and c are the smallest and
largest elements, respectively.

To avoid 321, there are no elements in regions A,C, F . Moreover, there are no elements in
regions E and G due to the selection of a and c. Thus, we have a = c + 1. Next, we prove
that there are no elements in region D. If an element x is in region D, then the elements
xbc, axb, axc, axbc would form a copy of pattern 132, 213, 312 and 3142, respectively. So we can
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Patterns σ1, . . . , σk |Fn(σ1, . . . , σk)| Reference

321, 1243 n2 − 3n+ 4 (n ≥ 2) Theorem 2.1

321, 2134 n2 − 3n+ 4 (n ≥ 2) Theorem 2.4

321, 1324 3
2n

2 − 13
2 n+ 10 (n ≥ 3) Theorem 2.6

321, 1423, 2143
(
n
2

)
+ 1 (n ≥ 0) Theorem 3.1

321, 3142, 2143
(
n
2

)
+ 1 (n ≥ 0) Theorem 3.4

321, 2143, 3124
(
n
2

)
+ 1 (n ≥ 0) Theorem 3.5

321, 2143, 4123
(
n
2

)
+ 1 (n ≥ 0) Theorem 3.7

321, 1423, 3124 Fn + 2 (n ≥ 4) Theorem 3.9

321, 1423, 4123 Fn+1 − 1 (n ≥ 1) Theorem 3.12

321, 3124, 4123 Fn+1 − 1 (n ≥ 1) Theorem 3.15

321, 14253 2n −
(
n
2

)
− 1 (n ≥ 1) Theorem 4.1

321, 21354 2n −
(
n
2

)
− 1 (n ≥ 1) Theorem 4.3

321, 31452 Pn+Pn−1+1
2 (n ≥ 1) Theorem 4.4

321, 31524 Pn+Pn−1+1
2 (n ≥ 1) Theorem 4.5

321, 41523 Pn+Pn−1+1
2 (n ≥ 1) Theorem 4.6

321, 132 n (n ≥ 1) Lemma 2.2

321, 213 n (n ≥ 1) Lemma 2.7

321, 312 Fn (n ≥ 1) Lemma 3.10

321, 3142 2n−1 (n ≥ 1) Lemma 4.2

Table 1: Enumeration of σ-avoiding Fishburn permutations

3



a

b

c

A

B

C

D

E F G

find a copy of consisting of a, the element immediately to its right (namely the first element
in region B or b when B is empty) and c.

Recall that the direct sum of two permutations σ and τ , of lengths k and ℓ respectively,
denoted by σ ⊕ τ , is a permutation of length k + ℓ consisting of σ followed by τ ′, where τ ′ is
obtained from τ by adding k to each element. For example, 12⊕ 123 = 12345. Additionally, an
active site in a permutation π ∈ Fn−1(σ) is the space to the left or to the right of π or between
two consecutive elements in π such that the permutation obtained by inserting n into this space
belongs to Fn(σ).

The following observation is very useful for us. Suppose σ is a pattern (or a set of patterns)
which does not begin with 1. One can easily see that |F (1)

n (321, σ)| = |Fn−1(321, σ)|. If σ begins
with 1 then we can make use of the fact (which can also be proved directly) that |F (1)

n (321, 1⊕
τ)| = |Fn−1(321, τ)|.

This paper is organized as follows. In Section 2, we prove three enumerative results, Theorems
2.1, 2.4, and 2.6, on Fishburn permutations avoiding the pattern 321 and a classical pattern of size
4. In Section 3, we consider the enumeration of Fishburn permutations that avoid the pattern
321 and two classical patterns of size 4. Theorems 3.9, 3.12, and 3.15 involve the Fibonacci
numbers. In Section 4, we deal with pattern avoidance of size 5 and our results in Theorems 4.4,
4.5, and 4.6 are related to the Pell numbers.

2 Avoiding 321 and a classical pattern of size 4

2.1 Enumerating Fn(321, 1243)

The main result in this subsection is the following theorem.

Theorem 2.1. For n ≥ 2, |Fn(321, 1243)| = n2 − 3n+ 4.

Before proving Theorem 2.1, we shall first enumerate Fn(321, 132).

Lemma 2.2. For n ≥ 1, we have
|Fn(321, 132)| = n.

Proof. By Lemma 1.2, the Fishburn permutations avoiding patterns 321 and 132 are in fact
permutations avoiding patterns 231, 321 and 132. Simion and Schmidt have proved in [15, Lemma
6 (b)] that |Sn(231, 321, 132)| = n. Thus we finish the proof.
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Proposition 2.3. For n ≥ 2, |F (2)
n (321, 1243)| = n2 − 4n+ 5.

Proof. For n = 2, F (2)
2 (321, 1243) = {21}. Thus |F (2)

2 (321, 1243)| = 1 = 22 − 4× 2 + 5.

For n = 3, F (2)
3 (321, 1243) = {213, 312}. Thus |F (2)

3 (321, 1243)| = 2 = 32 − 4× 3 + 5.

For n = 4, F (2)
4 (321, 1243) = {2134, 2143, 3124, 3142, 4123}. Thus

|F (2)
4 (321, 1243)| = 5 = 42 − 4× 4 + 5.

For n ≥ 5, let π1 = k. We consider the following cases of possible values of k.

1) k = n. To avoid 321, the elements 2, . . . , n− 1 appearing after n must be in increasing order.
So π = n 1 2 · · ·n− 1.

2) 3 ≤ k ≤ n− 1. Suppose π = k 1 π3π4 · · ·πn. We consider the value of π3.

a) π3 < k. In this case, π3 = 2, because otherwise k, π3, 2 would be a copy of 321. Addition-
ally, to avoid 1243, the elements 3, . . . , k − 1, k + 1, . . . , n to the right of 1 and 2 must be
in increasing order. Therefore,

π = k 1 2 3 · · · k − 1 k + 1 · · ·n.

b) π3 = k + 1. To avoid 321, the elements 2, . . . , k − 1 are in increasing order. Meanwhile,
the elements k + 2, . . . , n are in increasing order. If not, 1, k + 1 and a descending pair
would be a copy of 1243. In addition, no elements of {k + 2, . . . , n} can be inserted into
the site between 2 and k − 1. Indeed, if some x ∈ {k + 2, . . . , n} is inserted into the sites
between 2 and k − 1, say x is inserted into the site between i and i + 1 (2 ≤ i ≤ k − 2),
then 1, i, x, i+1 form a copy of 1243, which is impossible. It remains to consider 2 · · · k−1
as a whole part and insert it into

k 1 k + 1 1 k + 2 2 k + 3 · · · n−k−1n n−k.

All the n − k sites labeled above are available to insert 2 · · · k − 1. So in this case, the
number of permutations is n− k.

c) π3 ≥ k + 2. We claim that π4 = 2. If 2 < π4 < π3 then π3, π4, 2 form a copy of 321.
Meanwhile, if π4 > π3 then π3, π4, π3 − 1 form a copy of . Similar to the argument in
the previous paragraph, 2, . . . , k−1 are in increasing order and, to avoid 1243, no elements
in {k + 1, . . . , π3 − 1, π3 + 1, . . . , n} can be inserted into the sites between 2 and k − 1.
Thus k + 1, . . . , π3 − 1, π3 + 1, . . . , n are in increasing order to the right of k − 1. So

π = k 1 π3 2 · · · k − 1 k + 1 · · ·π3 − 1 π3 + 1 · · ·n.

As π3 ranges from k + 2 to n, the number of permutations in this subcase is n− k − 1.

For a fixed k, the total number of permutations given by the above three forms is

1 + (n− k) + (n− k − 1) = 2(n− k).
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3) k = 2. We can consider 2 and 1 as a single element playing the role of 1. Thus, the number
of permutations is |Fn−2(321, 132)| = n− 2.

Therefore, for n ≥ 5,

|F (2)
n (321, 1243)| = 1 +

n−1∑
k=3

2(n− k) + (n− 2) = n2 − 4n+ 5.

The proposition is thus proved.

Proof of Theorem 2.1. For n ≥ 2, we obtain

|F (1)
n (321, 1243)| = |Fn−1(321, 132)|,

and thus, by Lemma 2.2 and Proposition 2.3,

|Fn(321, 1243)| =|F (1)
n (321, 1243)|+ |F (2)

n (321, 1243)|
=(n− 1) + (n2 − 4n+ 5)

=n2 − 3n+ 4.

2.2 Enumerating Fn(321, 2134)

The main result in this subsection is as follows.

Theorem 2.4. For n ≥ 2, |Fn(321, 2134)| = n2 − 3n+ 4.

Proposition 2.5. For n ≥ 3, |F (2)
n (321, 2134)| = 2n− 4.

Proof. For n = 3, |F (2)
3 (321, 2134)| = 2 = 2× 3− 4.

For n ≥ 4, we let π1 = k. We first claim k ≥ n− 2 when π2 = 1. Otherwise, k ≤ n− 3. To
avoid 2134, the elements k+1, . . . , n appearing after k 1 must be in descending order. However,
since |{k + 1, . . . , n}| = n − k ≥ 3, there exists a forbidden copy of 321, which π avoids. Thus
k ≥ n− 2 as claimed. We proceed to discuss according to the three values of k for n ≥ 4.

1) k = n. The elements 2, . . . , n− 1 that appear after n must be increasing to avoid 321. So the
form of π is n 1 2 · · ·n− 1.

2) k = n − 1. Similarly, the elements 2, . . . , n − 2 that are positioned to the right of n − 1 are
arranged in increasing order. Suppose that π′ = n − 1 1 1 2 2 · · · n−3 n − 2 n−2. We can
insert n into each of the n− 2 active sites to obtain π. Thus, the number of permutations in
this case is n− 2.

3) k = n− 2. To avoid 321, the elements 2, . . . , n− 3 are in increasing order. Let

π′ = n− 2 1 1 2 2 · · · n−4 n− 3 n−3.
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To construct π we insert n − 1 and n into the sites labeled from 1 to n − 3. First, n must
be placed to the left of n− 1 to avoid the pattern 2134. Second, n− 1 cannot appear in the
i-th site for 1 ≤ i ≤ n − 4 since n, n − 1, n − 3 form a copy of 321. Thus n − 1 can only be
inserted to the (n− 3)-th site. Let

π′′ = n− 2 1 1 2 2 · · · n−4 n− 3 n−3 n− 1.

We should insert n into π′′ to obtain π. Notice that n can be inserted into each of the n− 3
sites. Thus, the number of permutations in this case is n− 3.

Therefore, for n ≥ 4, we have

|F (2)
n (321, 2134)| = 1 + (n− 2) + (n− 3) = 2n− 4.

Proof of Theorem 2.4. For n = 2, Fn(321, 2134) = {12, 21}, and thus

|F2(321, 2134)| = 2 = 22 − 3× 2 + 4.

For n ≥ 3, by induction, we have that

|F (1)
n (321, 2134)| = |Fn−1(321, 2134)| = n2 − 5n+ 8.

Thus, we get
|Fn(321, 2134)| =|F (1)

n (321, 2134)|+ |F (2)
n (321, 2134)|

=(n2 − 5n+ 8) + (2n− 4)

=n2 − 3n+ 4,

which completes the proof.

2.3 Enumerating Fn(321, 1324)

The main result of this subsection is as follows.

Theorem 2.6. For n ≥ 3, |Fn(321, 1324)| =
3

2
n2 − 13

2
n+ 10.

Lemma 2.7. For n ≥ 1, |Fn(321, 213)| = n.

Proof. By Lemma 1.2, we have |Fn(321, 213)| = |Sn(231, 321, 213)|. It is easy to see that the pairs
(231, 321, 213) and (213, 123, 231) are Wilf-equivalent by applying the complement operation.
In [15, Lemma 6 (d)], Simion and Schmidt proved that |Sn(213, 123, 231)| = n. Thus, we have
|Fn(321, 213)| = n.

Proposition 2.8. For n ≥ 3, |F (2)
n (321, 1324)| = 3

2
n2 − 15

2
n+ 11.

Proof. We can check this claim directly for n ≤ 5. Let π1 = k. We consider possible values of k
for n ≥ 6.
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1) k = 2. We can consider the first two elements 2 and 1 as a single element playing the role of
1. Thus by Lemma 2.7, the number of permutations in this case is |Fn−2(321, 213)| = n− 2.

2) 3 ≤ k ≤ n−2. Avoiding 321 implies that 2, . . . , k−1 to the right of k 1 must be in increasing
order. Next we consider the placement of elements k + 1, . . . , n.

a) None of the elements in {k + 1, . . . , n} is to the left of k − 1. Then we can consider
k 1 2 · · · k − 1 as the smallest element 1. By Lemma 2.7, the number of permutations in
this subcase is |Fn−k(321, 213)| = n− k.

b) Exact one element, denoted by x, in {k + 1, . . . , n} is to the left of k − 1. We claim that
x = n. Otherwise, k+1 ≤ x < n. Thus 1, x, k− 1, n form a copy of 1324, which π avoids.
Therefore, k + 1, . . . , n − 1 appearing after n must be in increasing order. This implies
that n can be inserted into each site between 1 and k − 1 as follows

π′ = k 1 1 2 2 · · · k−2 k − 1 k + 1 · · ·n− 1.

Thus the number of permutations in this subcase is k − 2.

c) At least two elements in {k + 1, . . . , n} are to the left of k − 1. Suppose that

π′ = k 1 1 2 2 · · · k − 2 k−2 k − 1.

We claim that k + 1, . . . , n are all to the left of k − 1 in increasing order and they are
inserted into the same site between 1 and k − 1.
First, the elements k + 1, . . . , n to the left of k − 1 are increasing to avoid 321.
Second, the elements in {k + 1, . . . , n} to the left of k − 1 must be inserted into the same
site. Suppose that two elements from k + 1, . . . , n with x < y are inserted into the i-th
and j-th site (i < j), respectively. Then i, x, j, y form a copy of 1324, which π avoids.
Third, we claim k + 1, . . . , n are all to the left of k − 1. Indeed, suppose that there is at
least one element in {k+1, . . . , n} to the right of k−1. To avoid 1324, the elements to the
right of k − 1 must be smaller than those to its left. Let s be the largest element to the
right of k − 1. Then s+ 1 and the element immediately to its right together with s form
a copy of . Therefore, there are no elements to the right of k − 1. Thus the number
of permutations in this subcase is k − 2.

Thus, the number of permutations in such a case is

(n− k) + (k − 2) + (k − 2) = n+ k − 4.

3) k = n− 1. To avoid 321, the elements 2, . . . , n− 2 are in increasing order. Suppose that

π′ = n− 1 1 1 2 2 · · ·n−3 n− 2 n−2.

Next we will insert n into π′. We see that all the n − 2 sites are active. So the number of
permutations in this case is n− 2.

4) k = n. To avoid 321, we have π = n 1 2 · · ·n− 1.
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Therefore, for n ≥ 6,

|F (2)
n (321, 1324)| =(n− 2) +

n−2∑
k=3

(n+ k − 4) + (n− 2) + 1

=
3

2
n2 − 15

2
n+ 11.

Proof of Theorem 2.6. For n ≥ 3, by Lemma 2.7 and Proposition 2.8, we have

|Fn(321, 1324)| =|F (1)
n (321, 1324)|+ |F (2)

n (321, 1324)|
=|Fn−1(321, 213)|+ |F (2)

n (321, 1324)|

=(n− 1) +

(
3

2
n2 − 15

2
n+ 11

)
=
3

2
n2 − 13

2
n+ 10.

3 Avoiding 321 and two classical patterns of size 4

3.1 Enumerating Fn(321, 1423, 2143)

The main result of this subsection is as follows.

Theorem 3.1. For n ≥ 0, |Fn(321, 1423, 2143)| =
(
n
2

)
+ 1.

Proposition 3.2. For n ≥ 2, |F (1)
n (321, 1423, 2143)| = n− 1.

Proof. It is routine to prove for n ≤ 3. Let π2 = k. We claim that either k = 2 or k = 3. Assume
that k ≥ 4. We consider the relative order of 2 and 3. If 2 is to the left of 3, then 1, k, 2, 3 form
a copy of 1423. If 3 is to the left of 2, the elements k, 3, 2 form a copy of 321. So k = 2 or k = 3.

• If k = 3, to avoid , we have π3 = 2. Moreover, to avoid 2143, the elements 4, . . . , n
appearing after 3 2 must be in increasing order. Therefore, the permutation π takes the
form

π = 1 3 2 4 · · ·n.

• If k = 2, we assume that π = 1 2 · · · j x · · · , where 2 ≤ j ≤ n− 2 and x ≥ j +2. Note that
the case where π = 1 2 · · ·n is an exceptional case. We claim that x = j + 2. To prove
this, we consider the order of j + 1 and j + 2 in π. On one hand, if j + 1 is to the left of
j + 2, then j, x, j + 1, j + 2 form a copy of 1423. On the other hand, if j + 2 is to the left
of j + 1, then x, j + 2, j + 1 form a copy of 321, which leads to a contradiction. Hence, we
conclude that x = j + 2. Furthermore, j + 1 must immediately follow j + 2. If this is not
true, then j + 2, the element immediately to its right, and j + 1 together form a copy of

. Besides, to avoid 2143, the elements j +3 · · ·n appearing after j +2 j +1 must be in
increasing order. So

π = 1 2 · · · j j + 2 j + 1 j + 3 · · ·n.
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Combining this with the exceptional permutation π = 1 2 · · ·n, the total number of per-
mutations in this case is (n− 3) + 1 = n− 2, where n− 3 accounts for the range of j from
2 to n− 2.

Therefore, for n ≥ 4, we have

|F (1)
n (321, 1423, 2143)| = 1 + (n− 2) = n− 1.

Proposition 3.3. For n ≥ 2,

|F (2)
n (321, 1423, 2143)| =

(
n− 1

2

)
+ 1.

Proof. We can directly check the cases when n ≤ 4. For n ≥ 5, we let π1 = k with 2 ≤ k ≤ n.
We shall discuss the different possibilities based on the value of k.

1) If k = 2, then the avoidance of 2143 implies that 3, 4, . . . , n to the right of 2 1 must be in
increasing order. So π = 2 1 3 · · ·n.

2) If 3 ≤ k ≤ n − 1, we need both the elements 2, . . . , k − 1 and k + 1, . . . , n to be arranged in
increasing order to avoid the patterns 321 and 2143, respectively. Suppose that

π′ = k 1 1 2 2 · · ·k−3 k − 2 k−2 k − 1 k−1.

In this case, we need to insert the elements k + 1, . . . , n into the available sites in increasing
order. However, we find that k+1 cannot be inserted into the site to the left of k−2. If k+1
is inserted into each of the sites labeled from 1 to k−3, then the elements 1, k+1, k−2, k−1
would form a copy of 1423, which π avoids. Hence, k + 1 can only be inserted into the sites
to the right of k − 2.

a) If k + 1 is inserted into the (k − 2)-th site, we assume that there are j elements between
k−2 and k−1, where 1 ≤ j ≤ n−k. The remaining n−k−j elements need to be inserted
into the (k − 1)-th site in increasing order. The resulting permutation can be represented
as follows:

π = k 1 2 · · · k − 2 k + 1 · · · k + j︸ ︷︷ ︸
j

k − 1 k + j + 1 · · ·n︸ ︷︷ ︸
n−k−j

.

For each fixed value of k, there is only one valid permutation based on the value of j. As
j ranges from 1 to n− k, the number of permutations in this subcase is n− k.

b) If k + 1 is inserted into the (k − 1)-th site, then

π = k 1 2 · · · k − 2 k − 1 k + 1 · · ·n.

So in this case, the number of permutations is n− k + 1.

3) If k = n, in order to avoid 321, the elements 2, . . . , n − 1 must be in increasing order. Thus
π = n 1 2 · · ·n− 1.
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For n ≥ 5, we have

|F (2)
n (321, 1423, 2143)| = 1 +

n−1∑
k=3

(n− k + 1) + 1 =

(
n− 1

2

)
+ 1.

Proof of Theorem 3.1. We can check the statement directly for n = 0 and n = 1. For n ≥ 2, we
get

|Fn(321, 1423, 2143)| =|F (1)
n (321, 1423, 2143)|+ |F (2)

n (321, 1423, 2143)|

=(n− 1) +

(
n− 1

2

)
+ 1

=

(
n

2

)
+ 1.

3.2 Enumerating Fn(321, 3142, 2143)

The main result of this subsection is as follows.

Theorem 3.4. For n ≥ 0, |Fn(321, 3142, 2143)| =
(
n
2

)
+ 1.

Proof. By Lemma 1.2, we have Fn(321, 3142, 2143) = Sn(231, 321, 3142, 2143) = Sn(231, 321, 2143).
Here we can omit the 3142-pattern since it contains a 231-pattern. Mansour has proved in [12,
Theorem 3.6(2)] that |Sn(231, 321, 2143)| =

(
n
2

)
+ 1.

3.3 Enumerating Fn(321, 2143, 3124)

The main result of this subsection is as follows.

Theorem 3.5. For n ≥ 0, |Fn(321, 2143, 3124)| =
(
n
2

)
+ 1.

Proposition 3.6. For n ≥ 2, |F (2)
n (321, 2143, 3124)| = n− 1.

Proof. We can easily verify the formula for n ≤ 3. Now let n ≥ 4. Assume that π1 = k with
2 ≤ k ≤ n.

1) If k = 2, avoiding 2143 forces the elements 3, 4, . . . , n to the right of 2 1 to be in increasing
order. So π = 2 1 3 · · ·n.

2) For 3 ≤ k ≤ n− 1, we claim that

π = k 1 2 · · · k − 1 k + 1 · · ·n.

First, the elements 2, . . . , k− 1 (appearing after k) and k+1, . . . , n (appearing after k and 1)
must be in increasing order to avoid 321 and 2143, respectively. Second, to avoid 3124, the
elements k + 1, . . . , n (playing the role of 4) must be to the left of 2, . . . , k − 1 (playing the
role of 2). The form of π in this case is

k 1 k + 1 · · ·n 2 · · · k − 1.

11



3) If k = n, then to avoid 321, the elements 2, . . . , n − 1 must be in increasing order. So
π = n 1 2 · · ·n− 1.

Fixing k, we can uniquely determine a unique permutation. The number of permutations, which
depends on k ranging from 2 to n, is n− 1.

Therefore, for n ≥ 2, we have

|F (2)
n (321, 2143, 3124)| = n− 1.

Proof of Theorem 3.5. The cases when n < 2 can be easily verified. For n ≥ 2, we have

|F (1)
n (321, 2143, 3124)| = |Fn−1(321, 2143, 3124)| =

(
n− 1

2

)
+ 1.

Thus, it follows from Proposition 3.6 that

|Fn(321, 2143, 3124)| = |F (1)
n (321, 2143, 3124)|+ |F (2)

n (321, 2143, 3124)|

=
((n− 1

2

)
+ 1
)
+ (n− 1)

=

(
n

2

)
+ 1.

3.4 Enumerating Fn(321, 2143, 4123)

The main result of this subsection is as follows.

Theorem 3.7. For n ≥ 0, |Fn(321, 2143, 4123)| =
(
n
2

)
+ 1.

Proposition 3.8. For n ≥ 2, |F (2)
n (321, 2143, 4123)| = n− 1.

Proof. It is trivial to show that the proposition holds for n = 2, 3. Now we consider n ≥ 4. Let
π1 = k. We first prove that k < 4. If k ≥ 4, then both k − 1 and k − 2 are located to the
right of 1. The avoidance of 321 implies that k − 2 and k − 1 are in increasing order. Then
k1(k − 2)(k − 2) would lead to an occurrence of 4123, which is a contradiction. Therefore, we
conclude that either k = 2 or k = 3.

• If k = 2, to avoid 2143, the elements 3, 4, . . . , n must be arranged in increasing order.
Hence, π = 2 1 3 · · ·n.

• If k = 3, to avoid 2143, the elements 4, . . . , n must be in increasing order. Let

π′ = 3 1 1 4 2 5 · · ·n n−2.

It is easy to verify that 2 can be inserted into each of the n− 2 sites of π′. So the number
of permutations in this case is n− 2.

12



Therefore, for n ≥ 4,

|F (2)
n (321, 2143, 4123)| = 1 + (n− 2) = n− 1.

Proof of Theorem 3.7. We can easily verify the formula for n < 2. For n ≥ 2, we get by induction
that

|F (1)
n (321, 2143, 4123)| = |Fn−1(321, 2143, 4123)| =

(
n− 1

2

)
+ 1.

Thus, we obtain

|Fn(321, 2143, 4123)| =|F (1)
n (321, 2143, 4123)|+ |F (2)

n (321, 2143, 4123)|

=
((n− 1

2

)
+ 1
)
+ (n− 1)

=

(
n

2

)
+ 1.

3.5 Enumerating Fn(321, 1423, 3124)

In this subsection and the following two subsections, we will be working with the well-known
Fibonacci numbers, see A000045 in OEIS [14]. The Fibonacci numbers, denoted by Fn, satisfy
the initial conditions F0 = F1 = 1 and recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2.

It is worth mentioning that, when counting pattern-avoiding Fishburn permutations involving
Fibonacci numbers, we consider the first k elements of π (the rearrangement of 1 2 · · · k) of some
kind of classifications, as a single element playing the role of 1. In this way, we can simplify the
enumeration process by focusing on permutations of smaller lengths. These permutations can
then be transformed into the enumeration problem that has been previously established, allowing
for easier enumeration and induction.

The main result of this subsection is as follows.

Theorem 3.9. For n ≥ 4,
|Fn(321, 1423, 3124)| = Fn + 2.

Lemma 3.10. For n ≥ 2, we get

|Fn(321, 312)| = Fn.

Proof. By Lemma 1.2, we have |Fn(321, 312)| = |Sn(231, 321, 312)|. In [15, Lemma 6 (a)], the
set Sn(231, 321, 312) has been proved to be enumerated by the Fibonacci numbers Fn. So we get
|Fn(321, 312)| = Fn.

Proposition 3.11. For n ≥ 4,

|F (2)
n (321, 1423, 3124)| = Fn−2 + 2.
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Proof. Suppose π1 = k. We claim the value of k can be chosen from {2, 3, n}. If not, we assume
that 4 ≤ k ≤ n − 1. In this case, there are at least two elements less than k to the right of k 1
and they cannot contain descents to avoid 321. Let

π′ = k 1 1 2 2 · · · k − 1 k−1 · · · .

We consider which site after 1 we can insert n into. If n is inserted into the first site, then
1, n, 2, k − 1 form a copy of 1423. Whereas if n is inserted into some site to the right of 2, then
k, 1, 2, n form a copy of 3124, which is a contradiction. So either k < 4 or k = n.

1) k = 2. The elements 2,1 can be seen as one element playing the role of 1. For the same
reason as in the later proof of Theorem 3.9, the number of permutations in this case is

|Fn−2(321, 312)| = Fn−2.

2) k = 3. First we have πn = 2. If there is an element x ≥ 4 to the right of 2, then 3, 1, 2, x form
a copy of 3124. Second, avoiding 321 forces 4, . . . , n to the left of 2 must be in increasing
order. So

π = 3 1 4 · · ·n 2.

3) k = n. To avoid 321, the elements 2, . . . , n− 1 must be in increasing order. So

π = n 1 2 · · ·n− 1.

Thus,
|F (2)

n (321, 1423, 3124)| = Fn−2 + 1 + 1 = Fn−2 + 2.

Proof of Theorem 3.9. Let π ∈ F
(1)
n (321, 1423, 3124) with π = 1⊕τ . We claim τ ∈ Fn−1(321, 312).

Indeed, the avoidance of 1423 implies that τ avoids 312. This is because if τ contained a 312-
pattern, then when we add the element 1 as the first element of τ , it would create a 1423-pattern.
Similarly, π avoiding 3124 means τ avoiding 3124 since the element 1 cannot be involved in every
copy of 3124-pattern. Moreover, if there is no 312-pattern in τ , it also implies that there is no
3124-pattern in τ since a 3124-pattern contains a 312-pattern. Therefore,

|F (1)
n (321, 1423, 3124)| = |Fn−1(321, 312)| = Fn−1.

For n ≥ 4, we have

|Fn(321, 1423, 3124)| =|F (1)
n (321, 1423, 3124)|+ |F (2)

n (321, 1423, 3124)|
=Fn−1 + (Fn−2 + 2)

=Fn + 2.
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3.6 Enumerating Fn(321, 1423, 4123)

The main result of this subsection is as follows.

Theorem 3.12. For n ≥ 1,

|Fn(321, 1423, 4123)| = Fn+1 − 1.

Proposition 3.13. For n ≥ 4,

|F (1)
n (321, 1423, 4123)| = Fn−1. (1)

Proof. Suppose that π = 1⊕ τ ∈ F
(1)
n (321, 1423, 4123). We claim that τ ∈ Fn−1(321, 312). The

proof of Theorem 3.9 establishes that if π avoids the pattern 1423, then τ avoids 312. Moreover,
if τ avoids 312, it must also avoid 4123 since a 4123-pattern contains a 312-pattern.

Therefore, by Lemma 3.10, we have

|F (1)
n (321, 1423, 4123)| = |Fn−1(321, 312)| = Fn−1.

Proposition 3.14. For n ≥ 4,

|F (2)
n (321, 1423, 4123)| = Fn − 1.

Proof. We claim that π1 = 2 or π1 = 3 to avoid patterns 321 and 4123, which has been proved
in the proof of Proposition 3.8. Next we consider two possible values of π1.

1) If π1 = 2, we can treat the elements 2 and 1 together as a single element, which plays the
role of 1. The number of permutations in this case is

|F (1)
n−1(321, 1423, 4123)| = Fn−2.

2) If π1 = 3, we consider the position of 2.

a) π3 = 2. We can treat three elements 3 1 2 as one element playing the role of 1. Thus,

|F (1)
n−2(321, 1423, 4123)| = Fn−3.

b) π3 ̸= 2. We claim
π = 3 1 4 · · · k 2 · · ·

with 4 ≤ k ≤ n. First we shall prove that π3 = 4 by contradiction. Suppose that π3 > 4.
We consider the value of π4. On the one hand, if π4 = 2, the element 4 is to the right of
2 and 1, π3, 2, 4 form a copy of 1423. On the other hand, if π4 ̸= 2, then to avoid 321, π3
and π4 must be in increasing order since 2 is to the right of them. Under the assumption
of π3 > 4, we have π3− 1 must be to the right of π4 and π3, π4, π3− 1 form a copy of ,
which is a contradiction.
Second, suppose that there are ℓ elements between 1 and 2. If ℓ = 1, then the element is 4.
If ℓ > 1, we denote them by a1, a2, . . . , aℓ with a1 = 4. Next we show that ai+1 = ai + 1
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for 1 ≤ i ≤ ℓ− 1. The elements a1, a2, . . . , aℓ to the left of 2 must be increasing to avoid
321. Additionally, if there exists j ∈ [ℓ] such that aj ̸= aj−1+1, then aj − 1 is to the right
of 2. Thus 1, aj , 2, aj − 1 form a copy of 1423. Let aℓ = k. We substitute a1, a2, . . . , aℓ
with 4, 5, . . . , k, where k ranges from 4 to n.
The first k elements 3, 1, 4, . . . , k, 2 can be seen as one element to play the role of 1. So

|F (1)
n−(k−1)(321, 1423, 4123)| = Fn−k.

Therefore, we have

|F (2)
n (321, 1423, 4123)| =Fn−2 + Fn−3 +

n∑
k=4

Fn−k

=
n−2∑
k=0

Fk = Fn − 1.

Proof of Theorem 3.12. We can check the statement directly for n ≤ 3. For n ≥ 4, we have

|Fn(321, 1423, 4123)| =|F (1)
n (321, 1423, 4123)|+ |F (2)

n (321, 1423, 4123)|
=Fn−1 + (Fn − 1)

=Fn+1 − 1.

3.7 Enumerating Fn(321, 3124, 4123)

The main result of this subsection is as follows.

Theorem 3.15. For n ≥ 1,

|Fn(321, 3124, 4123)| = Fn+1 − 1.

Proposition 3.16. For n ≥ 4,

|F (2)
n (321, 3124, 4123)| = Fn−1. (2)

Proof. We claim that 2 ≤ π1 ≤ 3. If not, suppose that π1 ≥ 4. We consider the order of 2 and 3.
If 2 3 are increasing, then π1, 1, 2, 3 form a copy of 4123. However, if they are in descending order,
then π1, 3, 2 form a copy of 321. So π1 = 2 or π1 = 3. As a result, the number of permutations
can be classified into two cases based on the value of π1.

If π1 = 2, we can treat 2 1 as one element playing the role of 1. The number of permutations
in this case can be reduced to

|F (1)
n−1(321, 3124, 4123)| = Fn−1 − 1.
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If π1 = 3, we have π = 3 1 4 · · ·n 2. First we shall show πn = 2. If πn ̸= 2, then 3, 1, 2, πn
form a copy of 3124. Second, to avoid 321, the elements 4, . . . , n appearing before 2 must be in
increasing order.

Therefore, we have

|F (2)
n (321, 3124, 4123)| = (Fn−1 − 1) + 1 = Fn−1.

Proof of Theorem 3.15. We can check the formula directly for n ≤ 3. By induction, we obtain

|F (1)
n (321, 3124, 4123)| = |Fn−1(321, 3124, 4123)| = Fn − 1.

For n ≥ 4, we have

|Fn(321, 3124, 4123)| =|F (1)
n (321, 3124, 4123)|+ |F (2)

n (321, 3124, 4123)|
=(Fn − 1) + Fn−1

=Fn+1 − 1.

4 Avoiding 321 and a classical pattern of size 5

4.1 Enumerating Fn(321, 14253)

The main result of this subsection is as follows.

Theorem 4.1. For n ≥ 1, we have

|Fn(321, 14253)| = 2n −
(
n

2

)
− 1.

In order to prove Theorem 4.1, we first enumerate Fn(321, 3142).

Lemma 4.2. For n ≥ 1, we have

|Fn(321, 3142)| = 2n−1. (3)

Proof. By Lemma 1.2, we have Fn(321, 3142) = Sn(231, 321, 3142). Actually the avoidance of
3142 can be omitted since a 3142-pattern contains a 231-pattern. Simion and Schmidt have
proved in [15, Lemma 5 (a)] that |Sn(321, 231)| = 2n−1. Therefore, we get |Fn(321, 3142)| =
2n−1.

It is worth mentioning that there exists a bijection between the sets of left-to-right maxima
of Fn(321, 3142) and the subsets of [n] containing n. Recall that πi is a left-to-right maximum
of π if πi is greater that all the entries to its left. For instance, the left-to-right maxima of
permutation

π = 3 1 2 4 7 5 6
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are 3,4,7. Conversely, given the left-to-right maxima, we can uniquely determine the entire
permutation. For instance, as the left-to-right maxima are 3,4,7, we deduce that π1 = 3 and
π2 = 1. To avoid 3142, the element 2 is to the left of 4. Additionally, since the elements 5,6 are
not left-to-right maxima, they are to the right of 7. Thus we have determined π.

Proof of Theorem 4.1. We can directly check that Theorem 4.1 holds for n ≤ 5. For n ≥ 6, we
shall classify the permutations based on the position at which the element 1 appears. Let π be
a permutation in Fn(321, 14253).

If π1 = 1, then π = 1 ⊕ τ with τ ∈ Fn−1(321, 3142). By equality (3), the number of
permutations is |Fn−1(321, 3142)| = 2n−2.

If π2 = 1, we divide our discussion into five cases according to the values of π1.

1) π1 = 2. Then π = 2 1 ⊕ τ with τ ∈ Fn−2(321, 3142). Hence, the number of permutations in
this case is |Fn−2(321, 3142)| = 2n−3.

2) π1 = k with 3 ≤ k ≤ n − 3. To avoid 321, it is necessary for the elements 2, . . . , k − 1 that
follow after k to be in increasing order. We next consider whether there are elements to the
left of k − 1 or not.

a) No elements in k + 1, . . . , n are inserted to the left of k − 1. Thus, the first k elements of
π are k, 1, 2 · · · , k − 1 and

π = k 1 2 · · · k − 1⊕ τ

with τ ∈ Fn−k(321, 3142). The number of permutations in this case is

|Fn−k(321, 3142)| = 2n−k−1.

b) There is at least one element in the range k + 1 . . . , n that is to the left of k − 1. We
first claim that if two or more elements in the set {k + 1 . . . , n} are positioned to the left
of k − 1, they must be arranged in increasing order and inserted into exactly one of the
available sites. If k = 3, there is only one available space between 1 and 2. If k ≥ 4, there
are at least two spaces between 1 and k − 1. Let

π′ = k 1 1 2 2 · · · i i i+ 1 · · · k−2 k − 1 k−1.

Assume two elements, denoted x and y, from the set {k + 1, . . . , n} are inserted into two
distinct sites ranging from 1 to k− 1. To avoid the pattern 321, it is necessary that x < y.
Let i be an element between x and y with 2 ≤ i ≤ k−3. Then 1, x, i, y, k−1 forms a copy
of the pattern 14253, which is forbidden in π. This proves our claim.
We next prove that there are precisely 2n−k − 1 ways to divide k + 1, . . . , n into the i-th
and the (k− 1)-th sites while ensuring that i-th site is non-empty. We make the following
classification based on the number of elements in the i-th site.

• Only one element ℓ ∈ {k+1, . . . , n} is inserted into the i-th site. In order to avoid 321,
the elements k+1 · · · ℓ−1 are in increasing order. Additionally, 1, ℓ, k−1, ℓ−1 form a
copy of 1423. To avoid the pattern 14253, the elements ℓ+ 1, . . . , n, representing the
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role of 5, are positioned to the right of ℓ− 1. The first ℓ elements of the permutation
are

k, 1, 2 · · · i, ℓ, i+ 1 · · · k − 1, k + 1 · · · ℓ− 1

and they can be considered as the smallest element. Note that when ℓ = k + 1, we
have πℓ = k − 1. Thus,

|Fn−ℓ(321, 3142)| =
{

2n−ℓ−1, k + 1 ≤ ℓ ≤ n− 1,
1, ℓ = n.

Thus, the total number of permutations with one element inserted into the i-th site is

n−1∑
ℓ=k+1

2n−ℓ−1 + 1 = 2n−k−1.

• More than one elements a1, a2, . . . , as ∈ {k+1, . . . , n} with 2 ≤ s ≤ n−k are inserted
into the i-th site. Then 321-avoiding implies that

a1 < a2 < · · · < as.

The -avoiding condition forces a1 = k + 1, a2 = k + 2 and so forth until as−1 =
k + s− 1, and as ≥ k + s. Observe that removing k + 1, k + 2, . . . , k + s− 1 does not
affect our enumeration. Similar to the above paragraph, the number of permutations
with more than one elements inserted into i-th site is

n−k∑
s=2

2n−k−s = 2n−k−1 − 1.

Consequently, as i has k − 2 choices, the number of permutations in this subcase is

(k − 2)
(
2n−k−1 + (2n−k−1 − 1)

)
= (k − 2)

(
2n−k − 1

)
.

3) π1 = n − 2. The elements 2, . . . , n − 3 that appear after n − 2 must be in increasing order.
Let

π′ = n− 2 1 2 · · · i 1 i+ 1 · · ·n− 3 2

where 1 ≤ i ≤ n− 3. We can insert n− 1 and n into π′ in the following ways.

• n− 1 is in the first site and n is in the second site.
• n is in the first site and n− 1 is in the second site.
• n− 1 and n are both in the first site in increasing order.
• n− 1 and n are both in the second site.

The first three subcases are associated with 1 ≤ i ≤ n− 4. In the last subcase, n− 1 and n
can be inserted either in increasing or descending order. Thus the number of permutations
when π1 = n− 2 is 3(n− 4) + 2 = 3n− 10.

4) π1 = n − 1. Then 2, . . . , n − 2 appearing after n − 1 must be in increasing order. Let
π′ = n − 1 1 1 2 2 · · · n−3 n − 2 n−2. We should insert n into π′ to get π. Actually, all the
n− 2 sites are available to insert n. Thus the number of permutations in this case is n− 2.

19



5) π1 = n. To avoid 321, the elements 2, . . . , n−1 appearing after n must be in increasing order.
So π = n 1 2 · · ·n− 1.

Therefore, for n ≥ 6, it follows that

Fn(321, 14253) = 2n−2 + 2n−3 +

n−3∑
k=3

(
2n−k−1 + (k − 2)(2n−k − 1)

)
+ (3n− 10) + (n− 2) + 1

= 2n −
(
n

2

)
− 1.

This completes the proof.

4.2 Enumerating Fn(321, 21354)

The main result of this subsection is as follows.

Theorem 4.3. For n ≥ 1, we have

|Fn(321, 21354)| = 2n −
(
n

2

)
− 1. (4)

For our convenience, we let F<k12···ℓ>
n (321, 21354) (1 ≤ ℓ ≤ k − 1) denote the set of Fish-

burn permutations of length n that avoid both 321 and 21354, and begin with k 1 2 · · · ℓ. Let
F<k12···ℓ̄>
n (321, 21354) denote the set of those permutations that begin with k 1 2 · · · ℓ − 1 but

not k 1 2 · · · ℓ.

Proof of Theorem 4.3. Our proof is by induction. One can directly check the equality (4) holds
for n ≤ 3. Suppose that (4) holds for n − 1. We shall prove it holds for n as well. Let
π ∈ Fn(321, 21354). If π1 = 1, then π = 1⊕ τ with τ ∈ Fn−1(321, 21354). Thus it follows from
the induction hypothesis that

|F (1)
n (321, 21354)| = |Fn−1(321, 21354)| = 2n−1 −

(
n− 1

2

)
− 1.

Therefore it suffices to prove the following equality

|F (2)
n (321, 21354)| = |Fn(321, 21354)| − |F (1)

n (321, 21354)|

=

(
2n −

(
n

2

)
− 1

)
−
(
2n−1 −

(
n− 1

2

)
− 1

)
= 2n−1 − n+ 1.

For the enumeration of F (2)
n (321, 21354), our classification is according to the value of π1.

1) π1 = 2. Then π = 2 1 ⊕ τ with τ ∈ Fn−2(321, 132). By Lemma 2.2, the number of
permutations in this case is |Fn−2(321, 132)| = n− 2.
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2) π1 = 3. Next we proceed to consider the position of 2.

a) The element 2 is immediately to the right of 1. We have

π = 3 1 2⊕ τ,

where τ ∈ Fn−3(321, 132). The number of permutations in this subcase is

|Fn−3(321, 132)| = n− 3.

b) There is only one element m between 1 and 2 with 4 ≤ m ≤ n.

• m = 4. Then 5, . . . , n appearing after 3 1 4 must be increasing to avoid 21354. So
π = 3 1 4 2 5 · · ·n.

• m ≥ 5. First, to avoid 321, the sequence 4, . . . ,m − 1 appearing after m must be
increasing. Second, avoiding 21354 implies that the sequence m+ 1, . . . , n appearing
after 3 1 m must be increasing and no elements in {m + 1, . . . , n} can be inserted
into the sites between 4 and m − 1. The former is easy to see. As for the latter, if
x ∈ {m+ 1, . . . , n} is inserted into one site between 4 and m− 1, then 3 1 4 x m− 1
form a copy of 21354. Hence, we can consider 4 · · ·m− 1 as one element and insert it
into the n −m + 1 available sites that the elements m + 1, . . . , n formed. There are
n−m+ 1 ways to insert 4 · · ·m− 1 to get π.

Thus, the number of permutations in this subcase is

1 +
n∑

m=5

(n−m+ 1).

c) There are at least two elements between 1 and 2. Then we have

π = 3 1 4 · · ·m 2 m+ 1 · · ·n,

where 5 ≤ m ≤ n.
First, the elements π3 and π4 appearing before 2 must be increasing to avoid 321. Second,
we have π3 = 4. If not, π3 − 1 appears to the right of 2 and π3, π4, π3 − 1 form a copy of

. Third, to avoid 21354, the elements 5, . . . ,m to the right of 3 1 4 are in increasing
order. Let the largest element to the left of 2 be m. So π is of the above form.
Therefore, the number of permutations in this subcase is n− 4.

It is worth mentioning that the number of those permutations with π1 = 3 and π2 = 1 but
π3 ̸= 2 is

1 +

n∑
m=5

(n−m+ 1) + (n− 4) =

n−3∑
m=1

m =

(
n− 2

2

)
.

Thus, we have

|F<312̄>
n (321, 21354)| =

(
n− 2

2

)
.
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3) π1 = k with 4 ≤ k ≤ n− 1. The number of permutations in this case is

|F<k12···k−1>
n (321, 21354)|+

k−1∑
i=2

|F<k12···̄i>
n (321, 21354)|.

For every permutation π that begins with k 1 2 · · · k− 1, we have π = k 1 2 · · · k− 1⊕ τ with
τ ∈ Fn−k(321, 132). Thus

|F<k12···k−1>
n (321, 21354)| = |Fn−k(321, 132)| = n− k.

In the following part, we discuss the enumeration of F<k12̄>
n (321, 21354) for k ≥ 4. The

enumeration of F<k12···ℓ̄>
n (321, 21354) for 3 ≤ ℓ ≤ k − 1 can be reduced to this form. We

classify according to the number of elements between 1 and 2.

a) There is only one element m between 1 and 2. Let π = k 1 m 2 · · · . Then to avoid 321,
we have m > k because k appears before m 2. Here we consider m ≥ k + 2. The case of
m = k + 1 is discussed later in Subcase b). Next we need to consider the arrangement of
the remaining elements {3, . . . , k − 1} ∪ {k + 1, . . . ,m − 1} ∪ {m + 1, . . . , n}. First, the
sequence 3, . . . , k − 1, the sequence k + 1, . . . ,m− 1, and the sequence m+ 1, . . . , n must
be increasing to avoid the pattern 321, 321, and 21354, respectively. Second, the sequence
k + 1, . . . ,m − 1 must be to the right of the increasing sequence 3 · · · k − 1 to avoid 321.
Third, no elements from m + 1, . . . , n can be inserted into the sites between k + 1 and
m − 1. If x ∈ {m + 1, . . . , n} is inserted into one of these sites, then k, 1, k + 1, x,m − 1
form a copy of 21354. Hence, we can consider k + 1, . . . ,m − 1 as one element and thus
consider {3, . . . , k− 1} ∪ {k+ 1, . . . ,m− 1} ∪ {m+ 1, . . . , n} as two increasing sequences:
one of length k − 2 composed of elements from the first two sets, and the other of length
n−m composed of elements from {m+1, . . . , n}. By treating this as a counting problem,
we can consider the number of permutations of the multiset {(k − 2) · A, (n − m) · B},
which is

(
n−m+k−2

k−2

)
.

b) There are at least two elements between 1 and 2. Then we claim that the elements between
1 and 2 are the elements k+1, . . . ,m in increasing order with k+1 ≤ m ≤ n (notice that
m = k + 1 is discussed here). Namely π is of the form π = k 1 k + 1 · · ·m 2 · · · , where
m ≥ k + 1. First, the elements between 1 and 2 must be greater than k and they are
increasing to avoid 321. Second, if π3 ̸= k + 1, the elements π3, π4, π3 − 1 form a copy of

. So π3 = k + 1. Third, from π4 onwards, the elements follow a consecutive increasing
sequence π4 = k + 2, π5 = k + 3 and so forth. If at some point πi ̸= πi−1 + 1, then
k, 1, k+1, πi, πi−1 form a copy of 21354. Similarly to the above, the sequence 3, . . . , k−1
and the sequence m + 1, . . . , n are two increasing sequences of lengths k − 3 and n −m,
respectively. Thus the counting can be turned into counting the number of permutations
of the multiset {(k − 3) ·A, (n−m) ·B}, which is

(
n−m+k−3

k−3

)
.

Thus,

|F<k12̄>
n (321, 21354)| =

n∑
m=k+2

(
n−m+ k − 2

k − 2

)
+

n∑
m=k+1

(
n−m+ k − 3

k − 3

)

=

n−4∑
m=k−2

(
m

k − 2

)
+

n−4∑
m=k−3

(
m

k − 3

)
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=

(
n− 3

k − 1

)
+

(
n− 3

k − 2

)
=

(
n− 2

k − 1

)
,

where the third equality follows from the hockey stick identity.

For the enumeration of |F<k12···̄i>
n (321, 21354)| with i ≥ 3, we can consider 1 2 · · · i− 1 as one

element playing the role of 1, consider i as 2 and consider k as k − i+ 2. Thus, we have

|F<k12···̄i>
n (321, 21354)| = |F<(k−i+2)12̄>

n−i+2 (321, 21354)| =
(

n− i

k − i+ 1

)
.

Therefore, we obtain

|F<k12···k−1>
n (321, 21354)|+

k−1∑
i=2

|F<k12···̄i>
n (321, 21354)|

=(n− k) +

(
n− 2

k − 1

)
+

k−1∑
i=3

(
n− i

k − i+ 1

)
=

k∑
i=2

(
n− i

k − i+ 1

)
.

4) π1 = n. Avoiding 321 indicates that 2, . . . , n− 1 to the right of n must be increasing. So

π = n 1 2 · · ·n− 1.

Thus, we have

|F (2)
n (321, 21354)| =|F<21>

n (321, 21354)|+ |F<312>
n (321, 21354)|+ |F<312̄>

n (321, 21354)|

+

n−1∑
k=4

(
|F<k12···k−1>

n (321, 21354)|+
k−1∑
i=2

|F<k12···̄i>
n (321, 21354)|

)
+ |F<n1>

n (321, 21354)|

=(n− 2) + (n− 3) +

(
n− 2

2

)
+

n−1∑
k=4

k∑
i=2

(
n− i

k − i+ 1

)
+ 1

=(n− 2) +
n−1∑
k=3

k∑
i=2

(
n− i

n− k − 1

)
+ 1

=(n− 2) +

n−1∑
k=3

((n− 1

k − 1

)
− 1
)
+ 1

=2n−1 − n+ 1,

where the second-to-last equality follows from the hockey stick identity.

We have thus proved Theorem 4.3 by induction.

4.3 Enumerating Fn(321, 31452)

The following three enumeration results are about Pell numbers, denoted by Pn with the
initial condition P0 = 0, P1 = 1 and recurrence relation Pn = 2Pn−1 + Pn−2 for n ≥ 2; see
A000129 in OEIS [14].
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Theorem 4.4. For n ≥ 1,

|Fn(321, 31452)| =
Pn + Pn−1 + 1

2
.

Proof. For our convenience, we denote Pn+Pn−1+1
2 by Qn for n ≥ 1 and define Q0 = 1.

Our proof is by induction on n at the same time, with easily checkable base cases, for

|F (1)
n (321, 31452)| = Qn−1 (5)

and
|F (2)

n (321, 31452)| = Pn−1. (6)

Suppose that the above two equalities hold for positive integers less than n. We shall prove them
hold for n as well. We classify according to the position of 1.

1) π = 1⊕ τ with τ ∈ Fn−1(321, 31452). By the induction hypothesis, the number of permuta-
tions is

|Fn−1(321, 31452)| = Qn−1.

2) π = 2 1⊕ τ with τ ∈ Fn−2(321, 31452). The number of permutations in this case is

|Fn−2(321, 31452)| = Qn−2.

3) π = k 1 · · · with 3 ≤ k ≤ n. The elements 2, . . . , k − 1 are increasing to avoid 321. Next we
classify according to whether there are elements in k + 1, . . . , n to the left of k − 1 or not.

a) π = k 1 · · · k− 1⊕ τ with τ ∈ Fn−k(321, 31452). The number of permutations in this case
is

|Fn−k(321, 31452)| = Qn−k.

b) There are some elements to the left of k − 1.
We claim that only one element from {k + 1, . . . , n} can be inserted into exactly one of
the k − 2 sites between 1 and k − 1. Suppose there are two elements x and y, from the
range k+1 to n, that are located to the left of k−1. If x > y, then x, y, k−1 form a copy
of 321. Conversely, if x < y, then k, 1, x, y, k − 1 form a copy of 31452, a contradiction.
Suppose that x is inserted into the site between i and i + 1 with 1 ≤ i ≤ k − 2 and
k + 1 ≤ x ≤ n. Then

π = k 1 2 · · · i x i+ 1 · · · k − 1 · · · .
Since k, 1, 2, . . . , i cannot create a copy of , 321, 31452 when followed by elements to
their right, we can treat the enumeration in this case as the enumeration of permutations
of length n− k + 1 of the following form

π′ = x− k + 1 1 · · · .

We just remove k, 1, 2, . . . , i and consider i + 1 · · · k − 1 as a whole part to play the role
of the smallest element 1. Thus the enumeration for a fixed i can be transformed into
counting the number of permutations of length n − k + 1 with the smallest element 1 in
the second site. Therefore, by equality (6), the number of permutations in this case is

(k − 2)|F (2)
n−k+1(321, 31452)| = (k − 2)Pn−k.
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Thus,

|F (2)
n (321, 31452)| = Qn−2 +

n∑
k=3

(
(k − 2)Pn−k +Qn−k

)
= Pn−1, (7)

where the last equality shall be proved in Appendix.

Therefore, we have

|Fn(321, 31452)| = |F (1)
n (321, 31452)|+ |F (2)

n (321, 31452)| = Qn−1 + Pn−1 = Qn.

This completes the proof.

4.4 Enumerating Fn(321, 31524)

Theorem 4.5. For n ≥ 1,

|Fn(321, 31524)| =
Pn + Pn−1 + 1

2
.

Proof. Let Qn := Pn+Pn−1+1
2 . We prove by induction on n that |Fn(321, 31524)| = Qn. The base

cases are easy to check. Assuming that this equality holds for positive integers less than n, we
shall prove it holds for n as well.

1) π = 1⊕ τ with τ ∈ Fn−1(321, 31524). By the induction hypothesis, the number of permuta-
tions is

|Fn−1(321, 31524)| = Qn−1.

2) π = 2 1⊕ τ with τ ∈ Fn−2(321, 31524). The number of permutations in this case is

|Fn−2(321, 31524)| = Qn−2.

3) π = k 1 · · · where 3 ≤ k ≤ n. The forbidden pattern 321 implies that 2, . . . , k − 1 are in
increasing order. Let

π′ = k 1 2 · · · k − 1.

We should insert k + 1, . . . , n into π′ to get π. Next, we classify the permutations based on
whether there are elements to the left of k − 1 in the range k + 1 through n.

a) There are no elements in k+1, . . . , n to the left of k−1. Then we can consider k 1 2 · · · k−1
as the smallest element. The number of permutations is

|Fn−k(321, 31524)| = Qn−k.

b) There are elements to the left of k − 1. Assume that k + 1 ≤ ℓ ≤ n is the largest among
them. We claim that the elements k + 2, . . . , ℓ− 1 are to the left of ℓ in increasing order.
If there exists an element x smaller than ℓ that is to the right of k− 1, then k, 1, ℓ, k− 1, x
form a copy of 31524.
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Thus, we can insert k+1, . . . , ℓ into the k−2 sites between 1 and k−1 in increasing order.
The enumeration can be transformed into counting the number of non-negative integer
solutions of

x1 + x2 + · · ·+ xk−2 = ℓ− k,

which is
(
ℓ−3
ℓ−k

)
.

Next, we consider the first ℓ elements as a cohesive unit, which is a rearrangement of
1, 2, . . . , ℓ, and they play the role of the smallest element. By the induction hypothesis,

|Fn−ℓ(321, 31524)| = Qn−ℓ.

In this subcase, the number of permutations is

n∑
ℓ=k+1

(
ℓ− 3

ℓ− k

)
Qn−ℓ.

Therefore, we have

|Fn(321, 31524)| = Qn−1 +Qn−2 +
n∑

k=3

(
Qn−k +

n∑
ℓ=k+1

(
ℓ− 3

ℓ− k

)
Qn−ℓ

)
= Qn,

where the last equality shall be proved in Appendix.

4.5 Enumerating Fn(321, 41523)

Theorem 4.6. For n ≥ 1,

|Fn(321, 41523)| =
Pn + Pn−1 + 1

2
.

Proof. Our proof is by induction on n at the same time, with easily checkable base cases, for

|Fn(321, 41523)| = Qn (8)

and
|F (2)

n (321, 41523)| = Pn−1. (9)

Suppose that the above two equality hold for positive integers less than n. We shall prove them
hold for n as well.

1) π = 1⊕ τ with τ ∈ Fn−1(321, 41523). By induction hypothesis, the number of permutations
is

|Fn−1(321, 41523)| = Qn−1.

2) π = 2 1⊕ τ with τ ∈ Fn−2(321, 41523). The number of permutations in this case is

|Fn−2(321, 41523)| = Qn−2.
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3) π = 3 1 · · · . We proceed based on the position of 2.

a) π = 3 1 2⊕ τ with τ ∈ Fn−3(321, 41523). The number of permutations is

|Fn−3(321, 41523)| = Qn−3.

b) π = 3 1 ℓ 2 · · · with 4 ≤ ℓ ≤ n. By equality (9), the number of permutations in this
subcase is

|F (2)
n−2(321, 41523)| = Pn−3.

c) There are at least two elements between 1 and 2. We claim that the form of permutations
in this case is

π = 3 1 4 · · ·m ℓ 2 · · · , 4 ≤ m ≤ n− 1, m+ 1 ≤ ℓ ≤ n.

First we prove π3 = 4. Assuming π3 ̸= 4, we consider the relative order of π3 and π4.
To avoid the pattern 321, it must be the case that π3 < π4. Consequently, π3, π4, π3 − 1
form a copy of , contradicting the fact that π avoids this pattern. Furthermore, to
avoid , we deduce that π4 = 5, π5 = 6 and so forth until πm−1 = m. In this particular
subcase, when performing the enumeration, we can disregard the elements to the left of ℓ,
as they cannot participate in every occurrence of the patterns , 321, or 41523. Instead,
we just focus on the permutations of length n−m+ 1 whose first element is greater than
1 and second element is 1. Thus the number of permutations in this subcase is

|F (2)
n−m+1(321, 41523)| = Pn−m.

So the number of permutations in this case is

Qn−3 + Pn−3 +
n−1∑
m=4

Pn−m = Pn−2.

4) π = k 1 · · · with 4 ≤ k ≤ n. To avoid 321, the elements 2, . . . , k − 1 are in increasing order.
Let

π′ = k 1 1 2 2 · · · k − 2 k−2 k − 1 k−1.

We claim that every element x with k + 1 ≤ x ≤ n cannot appear to the left of k − 2. If
not, k, 1, x, k − 2, k − 1 form a copy of 41523. Thus we can treat 1 2 · · · k − 2 as a single
element playing the role of 1. As a result, the enumeration reduces to counting the number
of permutations of length n− k + 3 where the first element is 3 and the second element is 1,
namely the enumeration in case 3). The number of permutations is then Pn−k+1.

Therefore, we have

|F (2)
n (321, 41523)| = Qn−2 + Pn−2 +

n∑
k=4

Pn−k+1 = Pn−1,

and consequently

|Fn(321, 41523)| = |F (1)
n (321, 41523)|+ |F (2)

n (321, 41523)| = Qn−1 + Pn−1 = Qn.
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Appendix

In the appendix, we prove some identities about Pell numbers which are used in Section 4.

Lemma A.7. For n ≥ 1, we have

n∑
i=1

Pi =
Pn+1 + Pn − 1

2
. (10)

Proof. We shall prove by induction on n. For n = 1, the left-hand of (10) equals P1 = 1. The
right-hand of (10) equals P2+P1−1

2 = 2+1−1
2 = 1. Suppose this equality holds for positive integers

less than n+ 1. We shall prove it holds for n+ 1 as well.

n+1∑
i=0

Pi =
n∑

i=0

Pi + Pn+1 =
Pn+1 + Pn − 1

2
+ Pn+1 =

2Pn+1 + Pn + Pn+1 − 1

2
=

Pn+2 + Pn+1 − 1

2
.

We are done.

Recall that Qn := Pn+Pn−1+1
2 for n ≥ 1 and define Q0 = 1. Direct computation leads to the

following identity.

Corollary A.8. For n ≥ 1, we have

n∑
i=0

Qi =
Pn+1 + n+ 1

2
. (11)

Another identity about Pk is as follows.

Lemma A.9. For n ≥ 1, we have

n∑
k=1

kPn−k =
Pn+1 − n− 1

2
. (12)

Proof. We shall prove the statement by induction on n. For n = 1, it is easy to check both sides
of (12) equal to 0. Suppose this equality holds for n. We shall prove it holds for n+ 1 as well.

n+1∑
k=1

kPn+1−k =

n∑
k=1

kPn−k +

n∑
i=0

Pi =
Pn+1 − n− 1

2
+

Pn+1 + Pn − 1

2
=

Pn+2 − n− 2

2
.

This completes the proof.

Now we can prove the equality (7) which was used in the proof of Theorem 4.4.
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Proof of equality (7). It follows from (10), (11), and (12) that

Qn−2 +
n∑

k=3

(
(k − 2)Pn−k +Qn−k

)
=

n−2∑
i=0

Qi +

n∑
k=1

kPn−k − Pn−1 − 2Pn−2 − 2

n−3∑
i=0

Pi

=
Pn−1 + n− 1

2
+

Pn+1 − n− 1

2
− 2

Pn−2 + Pn−3 − 1

2
− Pn−1 − 2Pn−2

=
Pn+1 + Pn−1

2
− 3Pn−2 − Pn−3 − Pn−1 = Pn−1.

We proceed to prove (4.4) which was used in the proof of Theorem 4.5.

Proof of equality (4.4). We first interchange the summations of
∑n

k=3

∑n
ℓ=k+1

(
ℓ−3
ℓ−k

)
Qn−ℓ to sim-

plify:

n∑
k=3

n∑
ℓ=k+1

(
ℓ− 3

ℓ− k

)
Qn−ℓ =

n∑
ℓ=4

ℓ−1∑
k=3

(
ℓ− 3

ℓ− k

)
Qn−ℓ =

n∑
ℓ=4

(2ℓ−3 − 1)Qn−ℓ =

n−4∑
ℓ=0

2n−ℓ−3Qℓ −
n−4∑
ℓ=0

Qℓ.

It suffices to prove that

n−4∑
ℓ=0

2n−ℓ−3Qℓ = Qn −Qn−1 −Qn−2 −Qn−3.

The base case is easy to check. Suppose this equality holds for positive integers less than n+ 1.
We shall prove it holds for n+ 1 as well.

n−3∑
ℓ=0

2n−ℓ−2Qℓ = 2
n−4∑
ℓ=0

2n−ℓ−3Qℓ + 2Qn−3 = 2(Qn −Qn−1 −Qn−2 −Qn−3) + 2Qn−3

=Qn+1 −Qn −Qn−1 −Qn−2.

This completes the proof.
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