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Abstract Elias, Proudfoot, and Wakefield conjectured that the Kazhdan-Lusztig polynomial of any
matroid is log-concave. Inspired by a computer proof of Moll’s log-concavity conjecture given by Kauers
and Paule, we use a computer algebra system to prove the conjecture for arbitrary uniform matroids.
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1 Introduction
Elias, Proudfoot, and Wakefield [5] introduced the notion of the Kazhdan-Lusztig polynomi-

als of matroids. The conjectures related to Kazhdan-Lusztig polynomials of matroids attracted
the attention of algebraic geometers and combinatorialists.

Recently, Braden, Huh, Matherne, Proudfoot, and Wang [1] confirmed a conjecture of Elias,
Proudfoot, and Wakefield [5], which states that the Kazhdan-Lusztig polynomial of an arbitrary
matroid has only non-negative coefficients. Unlike the case of Coxeter groups, Elias, Proudfoot,
and Wakefield also conjectured the log-concavity of these polynomials which is still open. Recall
that a real polynomial

∑n
i=0 aix

i is said to be log-concave if its coefficients satisfy that a2i ≥
ai−1ai+1 for any 1 ≤ i ≤ n− 1.

Conjecture 1 ([5]) For any matroid M , the Kazhdan-Lusztig polynomial PM (t) is log-
concave.

Conjecture 1 has been confirmed for whirl matroids, wheel matroids, and graphic matroids
of cycle graphs, fan graphs, and squares of paths, see [9, 13], where the real-rootedness of these
polynomials has been proved, which implies their log-concavity by Newton’s inequalities.
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In this paper, we shall prove this conjecture for uniform matroids. Throughout this paper,
we always assume that m and d are positive integers. Let Um,d denote the uniform matroid of
rank d on a set of m+ d elements. Suppose that

PUm,d
(t) =

⌊ d−1
2 ⌋∑

i=0

cm,d,it
i.

Several different formulae for cm,d,i have been given, see [6–8, 12]. In this paper we use the
following expression.

Theorem 1 ([7, Theorem 1.3]) For any positive integers m, d and any nonnegative integer
i ≤ ⌊d−1

2 ⌋, we have

cm,d,i =
1

d− i

(
d+m

i

)m−1∑
h=0

(
d− i+ h

h+ i+ 1

)(
i− 1 + h

h

)
. (1.1)

The real-rootedness of the Kazhdan-Lusztig polynomials of general uniform matroids is still
open. Gedeon, Proudfoot, and Young [9] proved that the polynomial PU1,d

(t) has only negative
zeros. By using a computer algebra system, Gao, Lu, Xie, Yang, and Zhang [7] proved that
the polynomial PUm,d

(t) has only negative zeros for 2 ≤ m ≤ 15. It is worth mentioning
that the computer algebra system is also used to prove real-rootedness of other combinatorial
polynomials, see [2, 4].

The main result of this paper is as follows.
Theorem 2 For any positive integers m and d, the polynomial PUm,d

(t) is log-concave.
The outline of our proof of Theorem 2 is as follows. For any positive integer i, we define

an,i =
1

(i− 1)!

m−1∑
h=0

1

(h+ i)(h+ i+ 1)

(
h+ n

h

)
,

and we let an,0 = 1. For any nonnegative integer i, we define

bd,i =
(d+m)!

(d− i+m)!

(
d− i− 1

i

)
.

Note that we ignore the index m in the subscripts of an,i and bd,i for convenience throughout
the paper. It is easy to check that

cm,d,i = ad−i,ibd,i.

We divide the proof into two inequalities and prove them respectively.
Lemma 3 For any positive integers m, i and d ≥ 2i+ 3, we have

a2d−i,i ≥ ad−i−1,i+1ad−i+1,i−1.

Let n = d− i. An equivalent statement of Lemma 3 is as follows: For any positive integers
m,n and i ≤ n− 3, we have

a2n,i ≥ an−1,i+1an+1,i−1. (1.2)
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Lemma 4 For any positive integers m, i and d ≥ 2i+ 3, we have

b2d,i ≥ bd,i+1bd,i−1.

Our proof of Lemma 3 follows the idea of Kauers and Paule’s computer proof [10] of Moll’s
log-concavity conjecture. We first present some recurrence relations of an,i in Section 2 and
then estimate upper and lower bounds of an,i

an−1,i
in Section 3. In Section 4, to prove Lemma 3,

we divide (1.2) into three inequalities and prove them using a computer algebra system. Finally,
we verify Lemma 4 directly and complete the proof of Theorem 2 in Section 5.

2 Recurrence relations of an,i

In this section, some recurrence relations of an,i, which will be used in later sections, are
given. The recurrence relations are obtained from the HolonomicFunctions package† by
Koutschan [11] for Mathematica. For more information of the method for finding recurrences
of combinatorial sequences, we refer the reader to Chen and Kauers [3].

The HolonomicFunctions package can be imported into Mathematica in the following
way.‡

In[1]:= << RISC`HolonomicFunctions`

HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

The main result of this section is stated as follows.
Lemma 5 For any positive integers m, i and n ≥ i+ 3, we have

an+1,i =
2n2 + (m− i)n− (m+ i)

n(n+ 1)
an,i −

(n− i− 1)(m+ n)

n(n+ 1)
an−1,i, (2.1)

an−1,i+1 =
n(n− 1)

i(i+m+ 1)(n− i− 2)
an,i −

n2 − (i+ 1)n+ i(i+m+ 1)

i(i+m+ 1)(n− i− 2)
an−1,i, (2.2)

an−1,i−1 =
(n− 1)n

i+m− 1
an,i −

(n− i− 1)(i+m+ n− 1)

i+m− 1
an−1,i, (2.3)

an,i+1 =
i+m+ n

i(i+m+ 1)
an,i −

m+ n

i(i+m+ 1)
an−1,i. (2.4)

Proof We first prove (2.1) and (2.2). The command Annihilator[expr] computes annihi-
lating operators for the expression expr.

†The HolonomicFunctions package can be downloaded at https://www3.risc.jku.at/research/combinat/
software/ergosum/RISC/HolonomicFunctions.html.

‡ The source code of our computer programs presented in this paper is openly available in GitHub at
https://github.com/mathxie/uniform_log-concave.

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://github.com/mathxie/uniform_log-concave
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In[2]:= ann = Annihilator

[
Sum

[
Binomial[n + h, h]

(i − 1)!(h + i)(h + i + 1)
, {h, 0,m − 1}

]
, {S[i], S[n]}

]
Out[2]= {−i(1 + i+m)(1 + i− n)Si − n(1 + n)Sn + (i2 + im+ n− in+ n2), (2 + 3n+ n2)S2

n + (−2− (4 +

m)n− 2n2 + i(2 + n))Sn − (i− n)(1 +m+ n)}

Here Sn (respectively Si) denotes the forward shift in n (respectively i). We next use the
command ApplyOreOperator to convert Out[2] into some recursive relations of an,i.

In[3]:= rec1 = ApplyOreOperator[Last[ann], an,i]

Out[3]=
{
−(i− n)(m+ n+ 1)an,i +

(
i(n+ 2)− (m+ 4)n− 2n2 − 2

)
an+1,i +

(
n2 + 3n+ 2

)
an+2,i

}
In[4]:= rec2 = ApplyOreOperator[First[ann], an,i]

Out[4]=
{(

i2 + im− in+ n2 + n
)
an,i − i(i+m+ 1)(i− n+ 1)an,i+1 − n(n+ 1)an+1,i

}
We then replace n with n− 1 for our purpose.

In[5]:= Simplify [Solve [(rec1/. n → n − 1) == 0, an+1,i]]

Out[5]=

{{
an+1,i →

(i− n+ 1)(m+ n)an−1,i −
(
in+ i−mn+m− 2n2

)
an,i

n(n+ 1)

}}
In[6]:= Simplify[Solve[(rec2/. n → n − 1) == 0, an−1,i+1]]

Out[6]=

{{
an−1,i+1 →

(
i2 + i(m− n+ 1) + (n− 1)n

)
an−1,i − (n− 1)nan,i

i(i+m+ 1)(i− n+ 2)

}}

From the outputs, we can obtain recurrence relations (2.1) and (2.2).
We proceed to prove (2.3) and (2.4) by using the command FindRelation to find more

recurrences. To prove (2.3), we need some recurrences of an−1,i−1, an,i and an−1,i corresponding
to operators 1, S[n]S[i] and S[i].

In[7]:= ApplyOreOperator [FindRelation[ann, Support → {1, S[n]S[i],S[i]}], an,i] ;

In[8]:= Simplify[Solve[(%/.n → n − 1/.i → i − 1) == 0, an−1,i−1]]

Out[8]=

{{
an−1,i−1 → (i− n+ 1)(i+m+ n− 1)an−1,i + (n− 1)nan,i

i+m− 1

}}
It is easy to verify (2.3) for i = 1. Similarly, to prove (2.4), the recurrences of an,i+1, an,i

and an−1,i corresponding to operators S[n]S[i], S[n] and 1 can be obtained as follows.
In[9]:= ApplyOreOperator[FindRelation[ann, Support → {1, S[n]S[i],S[n]}], an,i];

In[10]:= Simplify[Solve[(%/.n → n − 1) == 0, an,i+1]]

Out[10]=

{{
an,i+1 → (i+m+ n)an,i − (m+ n)an−1,i

i(i+m+ 1)

}}
Now we have the required recurrence relations as desired. This completes the proof.

3 Bounds of an,i

an−1,i

In this section we aim to estimate the upper and lower bounds of an,i

an−1,i
, which compose the

main ingredient of our proof of Lemma 3.
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To give the bounds of an,i

an−1,i
, we first introduce some notations. Let

X(n, i) = 1− i+m

2n
+

m− 1

n+ 1
+

√
i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2

2n(n+ 1)
, (3.1)

Y (n, i) = 1− 2i+m+ 1

2(n− 1)
+

i+ 2m

2n

+

√
i2(n+ 1)2 + 2i((m− 1)(n− 1)n+ 2(m+ n)) + (mn− 2m− n)2

2(n− 1)n
. (3.2)

Lemma 6 For any positive integers n ≥ 3, m and 1 ≤ i ≤ n− 2, we have

X(n, i) ≤ an,i
an−1,i

≤ Y (n, i). (3.3)

Proof Fixing i ≥ 1, we prove this lemma by induction on n for n ≥ i+ 2.
For the initial case n = i+ 2, we shall prove

X(i+ 2, i) ≤ ai+2,i

ai+1,i
= Y (i+ 2, i).

We first give exact formulae for ai+1,i and ai+2,i. Our formula for ai+1,i is as follows

ai+1,i =

m−1∑
h=0

1

(i− 1)!(h+ i)(h+ i+ 1)

(
h+ i+ 1

h

)

=
1

(i+ 1)!

m−1∑
h=0

(
h+ i− 1

h

)

=
1

(i+ 1)!

(
i+m− 1

m− 1

)
,

where the last identity follows from the famous hockey-stick identity. By using Gosper’s algo-
rithm, we have

ai+2,i =

m−1∑
h=0

1

(i− 1)!(h+ i)(h+ i+ 1)

(
h+ i+ 2

h

)

=
1

(i+ 1)(i+ 2)!

m−1∑
h=0

((
i2 + i(h+ 3) + 2

)(h+ i

h

)
−

(
i2 + i(h+ 2) + 2

)(h+ i− 1

h− 1

))

=
i2 + i(m+ 2) + 2

(i+ 1)(i+ 2)!

(
i+m− 1

m− 1

)
.

Therefore, it follows that
ai+2,i

ai+1,i
=

i2 + i(m+ 2) + 2

(i+ 1)(i+ 2)
.

By a direct computation, we obtain

Y (i+ 2, i) =
i2 + i(m+ 2) + 2

(i+ 1)(i+ 2)
=

ai+2,i

ai+1,i
.
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We next use the Mathematica command Resolve to prove

X(i+ 2, i) ≤ i2 + i(m+ 2) + 2

(i+ 1)(i+ 2)
.

The command Resolve[expr] can be used to eliminate quantifiers in expr. Note that we can
also use the command CylindricalDecomposition to do this.

In[11]:= X[n_, i_]:=1 − i + m

2n
+

m − 1

n + 1
+

√
i2 (n + 1)2 + 2 im (n + 1)2 + (m + 2n − mn)2

2n(n + 1)
;

In[12]:= Resolve
[
ForAll

[
{i,m}, i ≥ 1&&m ≥ 1, X[i + 2, i] ≤ i2 + i(m + 2) + 2

(i + 1)(i + 2)

]]
Out[12]= True

This proves the inequality for n = i+ 2.
Suppose that the inequality (3.3) holds for the general n > i+ 2, namely,

X(n, i) ≤ an,i
an−1,i

≤ Y (n, i).

We proceed to prove the desired inequality holds for n + 1 as well. By dividing both sides
of (2.1) by an,i, we have

an+1,i

an,i
= − (n− i− 1)(m+ n)

n(n+ 1)

an−1,i

an,i
− in+ i−mn+m− 2n2

n(n+ 1)
.

It follows from −(n− i− 1) < 0 that

− (n− i− 1)(m+ n)

n(n+ 1)

1

X(n, i)
−

(
in+ i−mn+m− 2n2

)
n(n+ 1)

≤ an+1,i

an,i
(3.4)

≤ − (n− i− 1)(m+ n)

n(n+ 1)

1

Y (n, i)
−

(
in+ i−mn+m− 2n2

)
n(n+ 1)

. (3.5)

It is routine to verify that the left-hand side of (3.4) is exactly X(n, i). To complete the
induction, we show that X(n, i) ≥ X(n + 1, i) and the right-hand side of (3.5) is less than or
equal to Y (n+ 1, i) by the Mathematica command Resolve.
In[13]:= Resolve [ForAll [{n, i,m}, n ≥ i + 1&& i ≥ 1&&m ≥ 1, X[n, i] ≥ X[n + 1, i]]]

Out[13]= True

In[14]:= Y [n_, i_]:=1 − 2i + m + 1

2(n − 1)
+

i + 2m

2n

+

√
i2(n + 1)2 + 2i((m − 1)(n − 1)n + 2(m + n)) + (mn − 2m − n)2

2(n − 1)n
;

In[15]:= −(−i + n − 1)(m + n)

(n(n + 1))Y[n, i]
+

−i(n + 1) + m(n − 1) + 2n2

n(n + 1)
≤ Y[n + 1, i];

In[16]:= Resolve [ForAll[{n, i,m}, n ≥ i + 1&& i ≥ 1&&m ≥ 1,%]]

Out[16]= True

We finish the induction by Out[13] and Out[16]. This completes the proof of Lemma 6.
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4 Proof of Lemma 3
To prove Lemma 3, we prove (1.2) by showing that

a2n,i ≥ an,i+1an,i−1 (4.1)

and
an,i+1

an−1,i+1
≥ an,i

an−1,i
≥ an+1,i

an,i
≥ an+1,i−1

an,i−1
. (4.2)

We first prove (4.1).
Lemma 7 For any positive integers n ≥ 4, m and 1 ≤ i ≤ n − 3, we have a2n,i ≥

an,i+1an,i−1.

Proof By the recurrence relations (2.2) and (2.3) we have

a2n−1,i − an−1,i+1an−1,i−1 =
a2n−1,i

i(i+m− 1)(i+m+ 1)(n− i− 2)
fn,i

(
an,i

an−1,i

)
,

where

fn,i(x) =− n2(n− 1)2x2 + n(n− 1)2(m+ 2n− i− 1)x

+ i(i+m− 1)(i+m+ 1)(n− i− 2)

− (n− i− 1)(i+m+ n− 1)
(
i2 + i(m− n+ 1) + (n− 1)n

)
.

The discriminant of fn,i(x) is

∆1(n, i) = (n− 1)2n2((i2 + (i− 1)m+ 1)2 + (i+m− 1)2(n− i− 2)2

+ 2
(
i2 + im+ 2i+m− 1

)
(i+m− 1)(n− i− 2)).

Since n ≥ i + 4 and i ≥ 1, it is easy to see that ∆1(n, i) > 0. Hence, fn,i(x) has two distinct
zeros, which are

z1(n, i) = 1− i−m+ 1

2n
−

√
∆1(n, i)

2(n− 1)2n2
,

z2(n, i) = 1− i−m+ 1

2n
+

√
∆1(n, i)

2(n− 1)2n2
.

Since the leading coefficient of fn,i(x) is negative and i(i+m− 1)(i+m+ 1)(n− i− 2) > 0, it
suffices to show that

z1(n, i) ≤
an,i

an−1,i
≤ z2(n, i). (4.3)

We next prove an,i

an−1,i
≥ z1(n, i). In Lemma 6, we have proved that

an,i
an−1,i

≥ X(n, i) = 1− i+m

2n
+

m− 1

n+ 1
+

√
i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2

2n(n+ 1)
.
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It is clear that z1(n, i) < 1− i−m+1
2n . Then z1(n, i) ≤ an,i

an−1,i
can be deduced from

1− i−m+ 1

2n
−X(n, i)

=
2m+ n− 1−

√
i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2

2n(n+ 1)
≤ 0. (4.4)

Indeed, since i ≥ 1 and n ≥ 4, we have

i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2 − (2m+ n− 1)2

≥ (n+ 1)2 + 2m(n+ 1)2 + (m+ 2n−mn)2 − (2m+ n− 1)2

=(n+ 1)
(
n
(
(m− 1)2 + 3

)
+ 6m− 3m2

)
≥ 4

(
(m− 1)2 + 3

)
+ 6m− 3m2

=(m− 1)2 + 15 ≥ 0.

Note that the inequality (4.4) can also be proved by cylindrical algebraic decomposition.
We proceed to show an,i

an−1,i
≤ z2(n, i). Recall that we have proved an,i

an−1,i
≤ Y (n, i) in

Lemma 6. It suffices to show that z2(n, i) ≥ Y (n, i), which can be proved by Mathematica.
In[17]:= ∆1[n_, i_] := (n − 1)2n2(2(i2 + im + 2i + m − 1)(i + m − 1)(n − i − 2)

+ (i2 + (i − 1)m + 1)2 + (i + m − 1)2(n − i − 2)2);

In[18]:= z2[n_, i_]:=1 − i − m + 1

2n
+

√
∆1[n, i]

2(n − 1)2n2
;

In[19]:= Resolve [ForAll[{n, i,m}, n ≥ i + 2&& i ≥ 1&&m ≥ 1], z2[n, i] ≥ Y [n, i]]

Out[19]= True

Hence, we prove a2n−1,i ≥ an−1,i+1an−1,i−1 for 1 ≤ i ≤ n − 4. Equivalently, we have
a2n,i ≥ an,i+1an,i−1 for 1 ≤ i ≤ n− 3. This completes the proof of Lemma 7.

Next, we prove (4.2) by the following two lemmas.
Lemma 8 For any positive integers n ≥ 4, m and 1 ≤ i ≤ n− 3, we have

an,i+1

an−1,i+1
≥ an,i

an−1,i
, (4.5)

an+1,i

an,i
≥ an+1,i−1

an,i−1
. (4.6)

Proof We first prove (4.5), which is equivalent to

an,i+1an−1,i − an,ian−1,i+1 ≥ 0.

Inequality (4.6) can then be deduced from (4.5).
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Utilizing the recurrence relations (2.2) and (2.4), we have

i(i+m+ 1)(n− i− 2)(an,i+1an−1,i − an,ian−1,i+1)

= − (n− 1)na2n,i −
(
in+ i−mn+ 2m− 2n2 + 3n

)
an,ian−1,i − (n− i− 2)(m+ n)a2n−1,i.

Let

gn,i(x) = −(n− 1)nx2 −
(
in+ i−mn+ 2m− 2n2 + 3n

)
x− (n− i− 2)(m+ n).

Then

i(i+m+ 1)(n− i− 2)(an,i+1an−1,i − an,ian−1,i+1) = a2n−1,ign,i

(
an,i

an−1,i

)
.

Since i(i+m+ 1)(n− i− 2) > 0 and a2n−1,i > 0, it remains to show that gn,i(
an,i

an−1,i
) ≥ 0. The

discriminant of gn,i(x) is

∆2(n, i) = i2(n+ 1)2 + 2i((m− 1)(n− 1)n+ 2(m+ n)) + (mn− 2m− n)2,

which is manifestly positive. Then gn,i(x) has two distinct zeros y1(n, i) and y2(n, i), where

y1(n, i) = 1− 2i+m+ 1

2(n− 1)
+

i+ 2m

2n
−

√
∆2(n, i)

2(n− 1)n
,

y2(n, i) = 1− 2i+m+ 1

2(n− 1)
+

i+ 2m

2n
+

√
∆2(n, i)

2(n− 1)n
.

Since the leading coefficient of gn,i(x) is negative, the statement that gn,i(
an,i

an−1,i
) ≥ 0 is equiv-

alent to
y1(n, i) ≤

an,i
an−1,i

≤ y2(n, i)

by the property of the quadratic function.
Note that y2(n, i) = Y (n, i), and we have proved that an,i

an−1,i
≤ Y (n, i) in Lemma 6. There-

fore, we have an,i

an−1,i
≤ y2(n, i). It remains to show that y1(n, i) ≤ an,i

an−1,i
.

Recall that

an,i =

m−1∑
h=0

(
h+n
h

)
(i− 1)!(h+ i)(h+ i+ 1)

.

Since each term in the sum of an,i is positive and(
h+ n

h

)
≥

(
h+ n− 1

h

)
,

we have
an,i

an−1,i
≥ 1.

We shall show that y1(n, i) ≤ 1. Since i ≥ 1, it is easy to check that

y1(n, i)− 1 ≤ y1(n, 1)− 1 =
m(n− 2)− 2n− 1−

√
m2(n− 2)2 + 2m(n+ 2) + 8n+ 1

2(n− 1)n
.
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and

m2(n− 2)2 + 2m(n+ 2) + 8n+ 1− (m(n− 2)− 2n− 1)2 = 4(m− 1)(n− 1)n ≥ 0.

Then y1(n, i) ≤ 1. Hence, we have y1(n, i) ≤ an,i

an−1,i
which completes the proof of (4.5).

Replacing n by n+ 1 and i by i− 1 in (4.5), we have
an+1,i

an,i
≥ an+1,i−1

an,i−1

for 2 ≤ i ≤ n− 1. It remains to show that (4.6) for i = 1. Recall that an,i

an−1,i
≥ 1. The desired

inequality follows from an,0 = an−1,0 = 1. This completes the proof.
Lemma 9 For any positive integers n ≥ 4, m and 1 ≤ i ≤ n− 3, we have

an,i
an−1,i

≥ an+1,i

an,i
. (4.7)

Proof In the proof of Lemma 6, we have shown that

an+1,i

an,i
= − (n− i− 1)(m+ n)

n(n+ 1)

an−1,i

an,i
− in+ i−mn+m− 2n2

n(n+ 1)
.

Thus, (4.7) turns out to be

an,i
an−1,i

≥ − (n− i− 1)(m+ n)

n(n+ 1)

an−1,i

an,i
− in+ i−mn+m− 2n2

n(n+ 1)
.

Multiplying both sides of the above inequality by an,i

an−1,i
, we get that(

an,i
an−1,i

)2

≥ (i− n+ 1)(m+ n)

n(n+ 1)
− in+ i−mn+m− 2n2

n(n+ 1)

an,i
an−1,i

.

Let

x1(n, i) = 1− i+m

2n
+

m− 1

n+ 1
−

√
i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2

2n(n+ 1)

and

x2(n, i) = 1− i+m

2n
+

m− 1

n+ 1
+

√
i2(n+ 1)2 + 2im(n+ 1)2 + (m+ 2n−mn)2

2n(n+ 1)

be the two real roots of the equation

x2 =
(i− n+ 1)(m+ n)

n(n+ 1)
− in+ i−mn+m− 2n2

n(n+ 1)
x.

Therefore, it suffices to show that an,i

an−1,i
≥ x2(n, i) by the property of the quadratic function.

Note that x2(n, i) is just X(n, i) defined in (3.1) and we have proved an,i

an−1,i
≥ X(n, i) by

Lemma 6. Thus we finish the proof of (4.7).
Now, we are able to prove Lemma 3.
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Proof of Lemma 3 We prove this lemma by showing that inequality (1.2) holds. For
1 ≤ i ≤ n− 3, it follows from Lemma 8 that

an,i+1

an−1,i+1
≥ an,i

an−1,i
and an+1,i

an,i
≥ an+1,i−1

an,i−1
.

By Lemma 9, we have
an,i

an−1,i
≥ an+1,i

an,i
.

Thus, we have
an,i+1

an−1,i+1
≥ an,i

an−1,i
≥ an+1,i

an,i
≥ an+1,i−1

an,i−1
.

Then
an,i+1

an−1,i+1
≥ an+1,i−1

an,i−1
,

namely,
an,i+1an,i−1 ≥ an−1,i+1an+1,i−1.

By Lemma 7, we have
a2n,i ≥ an,i+1an,i−1.

Therefore, we have
a2n,i ≥ an−1,i+1an+1,i−1.

This completes the proof of Lemma 3.

5 Proof of Theorem 2
In this section, we first give a proof of Lemma 4, and then prove Theorem 2.
Proof of Lemma 4 By direct computation, we have

b2d,i
bd,i+1bd,i−1

=
(i+ 1)(d− 2i)(d− 2i+ 1)(d− i− 1)(d− i+m+ 1)

i(d− 2i− 1)(d− i)(d− 2(i+ 1))(d− i+m)

=
(i+ 1)(d− 2i)(d− i+m+ 1)

i(d− 2i− 1)(d− i+m)

(d− 2i+ 1)(d− i− 1)

(d− i)(d− 2i− 2)

≥ (d− 2i+ 1)(d− i− 1)

(d− i)(d− 2i− 2)

= 1 +
2d− i− 1

(d− i)(d− 2(i+ 1))
≥ 1.

This completes the proof of the log-concavity of bn,i.
We proceed to prove Theorem 2.
Proof of Theorem 2 By Lemma 3, we have a2n,i ≥ an−1,i+1an+1,i−1. Let n = d − i, we

have
a2d−i,i ≥ ad−i−1,i+1ad−i+1,i−1.

Recall that we have shown b2d,i ≥ bd,i+1bd,i−1 in Lemma 4. Since cm,d,i = bd,iad−i,i, we have
c2m,d,i ≥ cm,d,i+1cm,d,i−1 . This completes the proof.
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