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1 Introduction

The objective of this paper is to prove the log-concavity of Kazhdan-Lusztig polynomials
of thagomizer matroids.

Let χM(t) be the characteristic polynomial of a matroid M . Elias, Proudfoot, and
Wakefield [2] associated to every matroid M a polynomial PM(t) with integer coefficients
such that the following conditions are satisfied:

1. If rkM = 0, then PM(t) = 1.

2. If rkM > 0, then degPM(t) < 1
2
rkM , where rkM is the rank of M .

3. For every M , trk MPM (t−1) =
∑

F χMF
(t)PMF (t), where MF and MF denotes the

restriction and contraction on F respectively.

The polynomial PM(t) are usually called the Kazhdan-Lusztig polynomial of M . They
proposed a conjecture which states that the coefficients of these polynomials are always
non-negative. This conjecture was recently confirmed by Braden, Huh, Matherne, Proud-
foot, and Wang [1].

Elias, Proudfoot, and Wakefield also conjectured the log-concavity of these polyno-
mials. This conjecture is still open. We say that a finite sequence {ai}ni=0 is log-concave
if the consecutive numbers satisfy a2i ≥ ai−1ai+1 for 1 ≤ i ≤ n − 1, and a polynomial∑n

i=0 aix
i is log-concave if its coefficients form a log-concave sequence.
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Conjecture 1.1 ([4]). For any matroid M, the Kazhdan-Lusztig polynomial PM(t) is
log-concave.

Conjecture 1.1 has been confirmed for uniform matroids, whirl matroids, wheel ma-
troids, and graphic matroids of cycle graghs, fan graghs, and squares of paths [4, 6, 7, 11].

In this paper, we will prove this conjecture for thagomizer matroids. Consider a
complete bipartite graph K2,n and let Tn be the graph obtained by joining the two dis-
tinguished vertices with an edge. The graph Tn is called a thagomizer graph. Let PTn(t)
be the Kazhdan-Lusztig polynomials of its graphical matroid.

Theorem 1.2. For any positive integer n, the Kazhdan-Lusztig polynomial PTn(t) is log-
concave.

We prove Theorem 1.2 through the following ideas. Let cn,k be the coefficient of tk in
PTn(t). Gedeon [3] gave a very nice formula for cn,k as follows:

cn,k =
1

n+ 1

(
n+ 1

k

) n∑
j=2k

(
j − k − 1

k − 1

)(
n− k + 1

n− j

)
. (1)

An equivalent generalization of this formula was conjectured by Gedeon [3] and proved
by Xie and Zhang[12]. Let

dn,k =
n∑

j=2k

(
j − k − 1

k − 1

)(
n− k + 1

n− j

)
and

bn,k =
1

n+ 1

(
n+ 1

k

)
.

Consequently,

cn,k = bn,kdn,k.

We shall prove the log-concavity of cn,k by showing that the same property holds for
dn,k and bn,k respectively. The log-concavity of bn,k is easy to check. The key ingredient
of our proof is the following lemma, which confirms the log-concavity of dn,k.

Lemma 1.3. For any positive integers n and k with n ≥ 2k + 1 , we have

d2n,k ≥ dn,k+1dn,k−1.

Our proof of Lemma 1.3 is inspired by Kauers and Paule’s computer proof of Moll’s
log-concavity conjecture [5].

The outline of the rest of the paper is as follows. We first give some recurrence
relations of dn,k in Section 2. We next estimate upper and lower bounds of dn,k

dn−1,k
in

Section 3. Finally, we prove Lemma 1.3 and Theorem 1.2 in Section 4.
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2 Recurrence relations of dn,k

In this section we give some recurrence relations of dn,k, which will be used later. To do
this, we use Zeilberger’s algorithm[10, 13], which is an effective tool for proving combina-
torial identities especially including sums of hypergeometric terms. We shall briefly intro-
duce how Zeilberger’s algorithm works to deduce some recurrence relations. Let F (n, k) be
a double hypergeometric term, namely, both F (n+1, k)/F (n, k) and F (n, k+1)/F (n, k)
are rational functions of n and k. Zeilberger’s algorithm is devised to find a double hyper-
geometric term G(n, k) and polynomials a0(n), a1(n), · · · , am(n) which are independent
of k such that

a0(n)F (n, k) + · · ·+ am(n)F (n+m, k) = G(n, k + 1)−G(n, k). (2)

Set S(n) =
∑b

k=a F (n, k). Summing (2) over k ranging from a to b, where a ≤ b. It follows
from (2) that

a0(n)S(n) + · · ·+ am(n)S(n+m) = G(n, b+ 1)−G(n, a).

Note that G(n, b+ 1)−G(n, a) = 0 holds for many sums arising in applications.

Lemma 2.1. For any positive integers n and k with n ≥ 2k + 1, we have

dn+1,k =
(−2k + 2n+ 2)dn−1,k + (4k − 3n− 2)dn,k

2k − n− 1
, (3)

dn−1,k−1 =
(−2k + 2n+ 2)dn−1,k − ndn,k

2k − n− 1
, (4)

dn−1,k+1 =
(−4k2 + 2k(n− 1) + n(n+ 1)) dn−1,k + n(2k − n)dn,k

4k(k − n)
. (5)

Proof. We first prove (3) by Zeilberger’s algorithm. Let

F1(j, n) =

(
j − k − 1

k − 1

)(
n− k + 1

n− j

)
and

G1(j, n)= − (n− k + 2)!

(j − k)(j − 2k − 1)!(k − 1)!(n− j + 2)!
.

Clearly, dn,k =
∑n

j=2k F1(j, n). It follows from the convention 1
(−1)!

= 0 that G1(n+3, n) =

G1(2k, n) = 0. By using Zeilberger’s algorithm on n, we obtain

−2(k − n− 2)F1(j, n) + (4k − 3n− 5)F1(j, n+ 1)

+ (−2k + n+ 2)F1(j, n+ 2) = G1(j + 1, n)−G1(j, n).
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By summing the above equation over j from 2k to n+ 2, we get

−2(k − n− 2)dn,k + (4k − 3n− 5)dn+1,k + (−2k + n+ 2)dn+2,k = 0. (6)

Thus we can get (3) by replacing n with n− 1 in (6).

We next prove

dn−1,k+1 = −(8k2 − 8kn− 2k + n2 + n) dn−1,k + (4k2 − 4kn− 2k + n2 + n) dn−1,k−1

4k(k − n)
(7)

by following similar lines to (3). Let

F2(j, k) =

(
j − k − 1

k − 1

)(
n− k + 1

n− j

)
and

G2(j, k) =
B(j, k)(n− k)!

(j − k − 2)(j − k − 1)(k − j)(j − 2k − 1)!(n− j)!k!
,

where

B(j, k) = 2j4 + j3(n− 16k − 13) + j2(44k2 − 3kn+ 71k − 3n+ 25)

− j(k2n+ 48k3 + 117k2 − kn2 − 5kn+ 78k − 2n+ 14)

− k2n2 + 3k3n+ 6k2n+ 18k4 + 51k3 + 49k2 − 2kn2 + 14k.

Clearly, dn,k =
∑n

j=2k F2(j, k). We get G2(n+1, k) = G2(2k, k) = 0. By using Zeilberger’s
algorithm on k, we obtain

−(2k − n)(2k − n+ 1)F2(j, k) + (−8k2 + 8kn− 6k − n2 + 5n)F2(j, k + 1)

− 4(k + 1)(k − n)F2(j, k + 2) = G2(j + 1, k)−G2(j, k).

By summing the above equation over j from 2k to n, we get

−(2k − n)(2k − n+ 1)dn,k + (−8k2 + 8kn− 6k − n2 + 5n)dn,k+1

− 4(k + 1)(k − n)dn,k+2 = 0. (8)

Thus we can get (7) by replacing k with k − 1 and n with n− 1 in (8).

We proceed to prove

dn+1,k = 2dn,k + dn−1,k−1. (9)

Replacing the summation index j in dn,k with i = n− j, we have

dn,k =
n−2k∑
i=0

(
n− i− k − 1

k − 1

)(
n− k + 1

i

)
.

4



Thus we have

dn+1,k − dn−1,k−1 − dn,k =
n−2k+1∑

i=0

(
n− i− k

k − 1

)(
n− k + 2

i

)

−

(
n−2k+1∑

i=0

(
n− i− k − 1

k − 2

)(
n− k + 1

i

)

+
n−2k∑
i=0

(
n− i− k − 1

k − 1

)(
n− k + 1

i

))

=
n−2k+1∑

i=0

(
n− i− k

k − 1

)(
n− k + 2

i

)
−

n−2k+1∑
i=0

(
n− i− k

k − 1

)(
n− k + 1

i

)

=
n−2k+1∑

i=1

(
n− i− k

k − 1

)(
n− k + 1

i− 1

)

=
n−2k∑
i=0

(
n− i− k − 1

k − 1

)(
n− k + 1

i

)
= dn,k.

This completes the proof of (9).

Therefore, we subtract (9) from (3) to obtain the recurrence relation (4). Finally, by
substituting (4) for dn−1,k−1 in (7), we obtain the recurrence relation (5). Now all the
required recurrence relations have been obtained. This completes the proof.

Note that the Mathematica program of finding the recurrence relations (3) and (6) are
described in Appendix. We use the package fastZeil developed by Paule, Schorn, and
Riese[8, 9] which is a Mathematica implementation of the Zeilberger’s algorithm.

3 Bounds of dn,k
dn−1,k

In this section we estimate the upper and lower bounds of dn,k

dn−1,k
. To give the bounds of

dn,k

dn−1,k
, we first introduce some notations. Let

X(n) =
1

n
+ 1, (10)

Y (n, k) =
2k

n− 2k
+

2

n
+ 2. (11)

Lemma 3.1. For any positive integers n and k with n ≥ 2k + 1, we have

X(n) ≤ dn,k
dn−1,k

≤ Y (n, k).
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Proof. Fixing k, we prove this lemma by using induction on n. For the case n = 2k + 1,
we need to show

X(2k + 1) ≤ d2k+1,k

d2k,k
≤ Y (2k + 1, k).

By the definition,
d2k+1,k

d2k,k
= 2k + 2,

X(2k + 1) =
1

2k + 1
+ 1, Y (2k + 1, k) = 2k +

2

2k + 1
+ 2.

Therefore, the desired inequality holds for n = 2k + 1.

Assume that the inequality holds for some n ≥ 2k + 1, namely,

X(n) ≤ dn,k
dn−1,k

≤ Y (n, k).

We proceed to prove the desired inequalities hold for n+1 as well. By dividing both sides
of (3) by dn,k, we have

dn+1,k

dn,k
=

(−2k + 2n+ 2)dn−1,k

(2k − n− 1)dn,k
+

4k − 3n− 2

2k − n− 1
.

Since 2k − n− 1 ≤ −2 < 0 we obtain

−2k + 2n+ 2

(2k − n− 1)X(n)
+

4k − 3n− 2

2k − n− 1
≤ dn+1,k

dn,k
(12)

≤ −2k + 2n+ 2

(2k − n− 1)Y (n, k)
+

4k − 3n− 2

2k − n− 1
. (13)

By the definition of X(n), we can see the left side of (12) is equal to X(n+ 1). Indeed,

−2k + 2n+ 2

(2k − n− 1)X(n)
+

4k − 3n− 2

2k − n− 1
=

(−2k + 2n+ 2)n

(2k − n− 1)(n+ 1)
+

4k − 3n− 2

2k − n− 1

=
1

n+ 1
+ 1 = X(n+ 1).

We only need to show the right side of (13) is less than or equal to Y (n+ 1, k), namely,

−2k + 2n+ 2

(2k − n− 1)Y (n, k)
+

4k − 3n− 2

2k − n− 1
≤ Y (n+ 1, k).

By the definition of Y (n, k), it suffices to verify

−2k + 2n+ 2

(2k − n− 1)
(

2k
n−2k

+ 2
n
+ 2
) + 4k − 3n− 2

2k − n− 1
≤ 2k

n+ 1− 2k
+

2

n+ 1
+ 2.
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which can be reduced to

2(2k2 − 2k(n+ 1)2 + n(n+ 1)2)

(n+ 1)(n+ 1− 2k)(kn+ 2k − n2 − n)
≤ 0.

Since n ≥ 2k + 1, we get n+ 1− 2k ≥ 2 > 0 and

kn+ 2k − n2 − n ≤ n− 1

2
(n+ 2)− n(n+ 1) = −1

2
n(n+ 1)− 1 < 0.

We proceed to prove

2k2 − 2k(n+ 1)2 + n(n+ 1)2 > 0.

Let f(k) = 2k2 − 2k(n+ 1)2 + n(n+ 1)2. By considering

f(k) = 2

(
k − (n+ 1)2

2

)2

− 1

2
(n+ 1)2

(
n2 + 1

)
as a quadratic function of k, the symmetry axis of f(k) is k = (n+1)2

2
. Since n ≥ 2k + 1,

we have k ≤ n−1
2

< n+1
2

< (n+1)2

2
, and therefore

f(k) ≥ f(
n− 1

2
) =

1

2
(n2 + n+ 2)2 − 1

2
(n+ 1)2(n2 + 1)

=
1

2
(3n2 + 2n+ 3) > 0.

This completes the proof.

4 Proof of Theorem 1.2

We first prove Lemma 1.3.

Proof of Lemma 1.3. For the convenience of notation, we shall prove that

d2n−1,k − dn−1,k+1dn−1,k−1 ≥ 0.

Through recurrence relations (4) and (5), we get that

4k(k − n)(2k − n− 1)
(
d2n−1,k − dn−1,k+1dn−1,k−1

)
=((n+ 1)dn−1,k − ndn,k) (2(k(n+ 2)− n(n+ 1))dn−1,k + n(n− 2k)dn,k) .

Let
fn,k(x) = ((n+ 1)− nx) (2(k(n+ 2)− n(n+ 1) + n(n− 2k)x)) .
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Hence it follows that

4k(k − n)(2k − n− 1)
(
d2n−1,k − dn−1,k+1dn−1,k−1

)
= d2n−1,kfn,k

(
dn,k
dn−1,k

)
.

It is easy to see the two distinct zeros of fn,k(x) are just X(n) and Y (n, k) defined in (10)
and (11) respectively. Since the leading coefficient of fn,k(x) is negative, the log-concavity
follows from Lemma 3.1. This completes the proof.

We proceed to prove Theorem 1.2.

Proof of Theorem 1.2. According to Lemma 1.3, we have d2n,k ≥ dn,k+1dn,k−1. It is well
known that the binomial coefficients satisfy(

n

k

)2

≥
(

n

k + 1

)(
n

k − 1

)
.

Thus it follows that b2n,k ≥ bn,k+1bn,k−1. Therefore, since cn,k = bn,kdn,k, we have that
c2n,k ≥ cn,k+1cn,k−1.
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Appendix

Here we show the Mathematica program how to obtain the recurrence relations (3) and
(7). The Zeilberger’s algorithm was implemented as the function

Zb[function, range, n, order]

in the package fastZeil to find a recurrence relation of given order in n for the sum of
the function over the range.

In[1]:= << RISC f̀astZeil`
Fast Zeilberger Package version 3.61
written by Peter Paule, Markus Schorn, and Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

In[2]:= Zb[Binomial[j − k − 1, k − 1]Binomial[n − k + 1, n − j], {j, 2k, n}, n, 2]
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If ‘-2k + n’ is a natural number and none of -1 + k, 1 - k + n is a negative integer, then:

Out[2]= {−2(−2 + k − n)SUM[n] + (−5 + 4k − 3n)SUM[1 + n] + (2− 2k + n)SUM[2 + n] == 0}

In[3]:= Zb[Binomial[j − k − 1, k − 1]Binomial[n − k + 1, n − j], {j, 2k, n}, k, 2]
If ‘-2 - 2k + n’ is a natural number and none of -1 + k, -4 - 2k + n, -1 - k + n is a negative

integer, then:

Out[3]= {−(2k − n)(1 + 2k − n)SUM[k] + (−6k − 8k2 + 5n+ 8kn− n2)SUM[1 + k]− 4(1 + k)(k −
n)SUM[2 + k] == 0}
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