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Abstract. Motivated by the study of Macdonald polynomials, J. Haglund and A. Wilson intro-
duced a nonsymmetric polynomial analogue of the chromatic quasisymmetric function called the
chromatic nonsymmetric polynomial of a Dyck graph. We give a positive expansion for this polyno-
mial in the basis of fundamental slide polynomials using recent work of Assaf-Bergeron on flagged
(P, ρ)-partitions. We then derive the known expansion for the chromatic quasisymmetric function
of Dyck graphs in terms of Gessel’s fundamental basis by taking a backstable limit of our expansion.

1. Introduction

The chromatic polynomial was introduced by Birkhoff [7] in 1912 for planar graphs in an attempt
to establish the four color theorem, and was generalized to arbitrary graphs by Whitney [20]. This
polynomial and its various generalizations have proven to be fertile grounds for a host of inter-
esting mathematics ever since. Stanley [18] introduced a symmetric function generalization of the
chromatic polynomial called the chromatic symmetric function. This function was studied from the
perspective of (P, ω)-partitions and quasisymmetric functions by Chow [9]. By introducing another
parameter t, this perspective gives a more refined function called the chromatic quasisymmetric
function, which was introduced by Shareshian-Wachs [17]. They established that the chromatic
quasisymmetric functions of incomparability graphs of posets expand in terms of Gessel’s funda-
mental quasisymmetric functions with coefficients in N[t]. For incomparability graphs of natural
unit interval orders, the chromatic quasisymmetric function is in fact Schur positive. See [2, 5, 6, 11]
for some remarkable aspects of these symmetric functions and related topics. Given the recent in-
terest in polynomial analogues of combinatorially defined quasisymmetric and symmetric functions
[13], it is natural to investigate chromatic nonsymmetric polynomials/functions. For the class of
graphs mentioned earlier, a nonsymmetric polynomial analogue was proposed by Haglund-Wilson
[10], and this is the chief object of our study.

These graphs are conveniently encoded via Dyck paths, and Novelli-Thibon [15], in their study
of the attached chromatic quasisymmetric functions from the viewpoint of Hopf algebras, refer
to them as Dyck graphs. To allow for a nonsymmetric polynomial analogue, Haglund-Wilson [10]
attached Dyck graphs to partial Dyck paths and used squares that lie between D and the line y = x
to impose restrictions on the colors allowed at each vertex. Thus, instead of having a common set
of colors for all vertices, we use D to obtain different restrictions on colors for different vertices.
Taking the generating function of monomials attached to proper colorings with these restrictions
along with appropriate t-weights gives us the chromatic nonsymmetric polynomial X̃D(xr; t).
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Our central result is that X̃D(xr; t) expands in terms of fundamental slide polynomials with
coefficients in N[t]. The fundamental slides [4] are an extension of fundamental quasisymmetric
polynomials to a basis for the ring of all polynomials. By extending our partial Dyck path to an
infinite path by prepending infinitely many east steps, we can obtain a formal power series

←−X D(x; t)
as the stable limit. We then obtain as a corollary of our main result the expansion of the chromatic
quasisymmetric function of Dyck graphs in terms of fundamental quasisymmetric functions by way
of
←−X D(x; t).
Outline of the article: After setting up the necessary background, we introduce chromatic

nonsymmetric polynomials at the end of Section 2.2. In Sections 2.4 and 2.5 we define restricted
(P, ω)-partitions following Assaf-Bergeron [3] and introduce the polynomial analogue of the qua-
sisymmetric function attached to usual (P, ω)-partitions, focusing in particular on labeled linear
orders. In Section 3, we provide a positive expansion for the chromatic nonsymmetric polynomial in
terms of fundamental slide polynomials in Theorem 3.3. We then proceed to study the backstable
limit, drawing inspiration from work of Lam-Lee-Shimozono [12], and derive a known expansion
of the chromatic quasisymmetric function for Dyck graphs in terms fundamental quasisymmetric
functions as a corollary of our main result.

2. Background

For n a nonnegative integer, we denote the set {1, . . . , n} by [n]. Throughout, we use < to
denote the natural order on integers. Given a positive integer n, we denote by xn the commutative
alphabet {x1, . . . , xn}. For notions concerning symmetric/quasisymmetric functions and standard
combinatorial constructions that are not defined here, we refer the reader to [14, 16, 19].

2.1. Graphs, colorings. We consider finite simple graphs G = (V,E) where V is an ordered set
of vertices. We identify V with [n] with the order being the natural order on the integers. The set
of edges E is a subset of {{i, j} | 1 ≤ i < j ≤ n}. A coloring of G is a map f : [n] → Z. For the
most part we will restrict to maps to Z>0, though we allow for ‘negative’ colors in Subsection 3.1.
A coloring f of G is proper if f(i) ̸= f(j) for all edges {i, j} ∈ E. We call {i, j} ∈ E a descent
of f if i < j and f(i) > f(j). We denote the number of descents in f by desG(f). The chromatic
quasisymmetric function introduced by Shareshian and Wachs [17, Definition 1.2] is defined as
follows:

X̃G(x≥1; t) =
∑

proper colorings f :[n]→Z>0

tdesG(f)xf(1) · · ·xf(n),(2.1)

where n is the cardinality of V and x≥1 denotes the alphabet of commuting indeterminates {xi | i ∈
Z>0}.

Remark 2.1. The careful reader may have noted that the definition in (2.1) differs from that in
[17] up to twisting by an involution defined on the ring of quasisymmetric functions. In fact
we have that t|E(G)|X̃G(x≥1; t

−1) equals XG(x≥1; t) in the notation of [17]; see in particular [17,
Proposition 2.6] and [17, Corollary 2.7]. More importantly, for the class of graphs G considered
here and in [10], the chromatic quasisymmetric function turns out to be symmetric and this implies
XG(x≥1; t) = X̃G(x≥1; t) [17, Corollary 2.7]. This is primarily why we continue to refer to the
latter as the chromatic quasisymmetric function.
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2.2. Partial Dyck paths and associated graphs. Let n and r be nonnegative integers. We
define Pn,r to be set of lattice paths that begin at (0, r), end at (n+ r, n+ r), take unit north and
east steps, and stay weakly above the line y = x. We refer to elements of Pn,r as partial Dyck paths.
We next discuss a procedure that assigns to each D ∈ Pn,r a graph GD = ([n], ED) and a function
ρD : [n]→ Z≥0.

Given D ∈ Pn,r, assign the integers 1, . . . , n+r to the unit squares along the diagonal y = x going
from (0, 0) to (n+r, n+r), and the integers 0,−1, . . . in the opposite direction. For p < q, let s(p, q)
refer the unique square in the plane directly north of the square labeled p and directly west of the
square labeled q. We define GD by explicitly describing ED — {i, j} ∈ ED if and only if i < j and
s(i+ r, j+ r) lies below D. Following [15], we call GD a Dyck graph. Such graphs are characterized
by the property that {i, j} ∈ E and i < j implies {i′, j′} ∈ E for all i ≤ i′ < j′ ≤ j. The restriction
map ρD is defined as follows: for every 1 ≤ i ≤ n, find the largest j ≤ r such that s(j, i + r) lies
above D and set ρD(i) = j. Note in particular that 0 ≤ ρD(1) ≤ ρD(2) ≤ · · · ≤ ρD(n) ≤ r.

Figure 1 shows a partial Dyck path D in P6,5. Thus the vertex set of GD is [6]. As the green
square s(6, 8) lies below D, we infer that (1, 3) ∈ ED. Arguing in this manner, one can compute
ED. As the orange square s(4, 7) does not lie below D while s(5, 7) does, we infer that ρD(2) = 4.
Figure 2 shows GD as well as the restriction map ρD. The latter is written with inequalities the
meaning of which we now clarify.
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Figure 1. A partial Dyck path
D.

1 2 3 4 5 6
≤1 ≤4 ≤5 ≤5 ≤5 ≤5

Figure 2. The graph GD.

Given D ∈ Pn,r we introduce a polynomial X̃D(xr; t) by mimicking the definition of the chromatic
quasisymmetric function. Define

X̃D(xr; t) =
∑

proper colorings f :[n]→Z>0

f(i)≤ρD(i)

tdesG(f)xf(1) · · ·xf(n).(2.2)

We call X̃D(xr; t) the chromatic nonsymmetric polynomial of GD. Our definition is heavily inspired
from the work of Haglund-Wilson [10, Definition 5.6.1]. One important aspect of our definition is
that it allows us to obtain a well-defined (back)stable limit and recover a result of Shareshian-Wachs
in doing so (see Subsection 3.1). On the other hand, the Haglund-Wilson analogue does not have
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a stable limit. Having said that, our chromatic nonsymmetric polynomial differs very slightly from
theirs, and we compare the two in the remark that follows.

Remark 2.2. First, we note that Haglund and Wilson use ascents rather than descents; we claim
that this is a minor difference from our definition. In their setup, the graph associated to a partial
Dyck path D has r down to 1 as its first r vertex colors. These colors lead to restrictions on the
colors of later vertices. So, in the case of the Dyck path in Figure 1, we would have that the blue
shaded cells labeled 1 through 5 and the orange shaded cells labeled 6 through 11 form the vertex
set for the graph Gn,5. When one considers proper colorings of this graph, the vertices 1 through
5 have ‘forced’ colors from 5 down to 1. The restrictions on the colors for the remaining vertices
are determined by D as before.

Now, note that ascent edges {u < v} in Gn,r come in two flavors: those that satisfy 1 ≤ u ≤ r
and those that satisfy r < u ≤ n+ r. Given that the graph Gn,r is a Dyck graph and in view of the
forced colors on vertices 1 through r, it follows that the number of ascents of the first flavor does
not depend on the coloring on the vertices r + 1 through r + n.

In our definition, we do not include these vertices in the graph. Instead, we directly force
restrictions on the later vertices. These restrictions have the same effect as coloring the first r
vertices with 1 up to r and reversing the inequalities in Haglund-Wilson’s restrictions.

In summary we infer that Haglund-Wilson’s chromatic nonsymmetric polynomial XGn,r(xr; t) is
equal to x1 . . . xrt

stat(D)X̃D(xr; t
−1) where stat(D) is a natural number completely determined by

D. In particular, going from one to the other is not complicated. Additionally, other than a trivial
power of t, the two chromatic nonsymmetric polynomials in the alphabet {x1, . . . , xr} differ only
by the (symmetric) monomial x1 · · ·xr.

2.3. Slide polynomials. We recall some notions before defining slide polynomials, a polynomial
analogue of the fundamental quasisymmetric functions introduced in [4]. Our treatment is slightly
nonstandard, but it will allow us to deal with stable limits in a uniform manner.

Given a sequence of nonnegative integers a = (ai)i∈Z, we define the support of a, denoted by
supp(a) to be the set {i ∈ Z | ai > 0}. If supp(a) is finite, then we call a a weak composition. We
denote the set of weak compositions by SZ because we may interpret a as the code1 of a permutation
of Z that fixes all but finitely many integers. The weight of any sequence (finite or infinite) is the
sum of its entries. There is a unique weak composition of weight 0: the sequence consisting solely of
0s. Given an integer r, the set of all weak compositions a that satisfy ai = 0 for all i > r is denoted
by Sr

Z. The (potentially empty) sequence obtained by omitting all zeros from a weak composition
is called a strong composition. We denote the strong composition underlying a by flat(a). The
unique strong composition of weight 0 is denoted by ∅. From this point onward, we reserve
the term composition for a weak composition.

For two strong compositions α and β of the same weight, we say that α refines β if we can
iteratively combine adjacent parts of α to obtain β. For instance, (2, 1, 1, 2, 1) refines (3, 4). Using
the notion of refinement we define an order ≤c on compositions of the same weight as follows:
b ≤c a if flat(b) refines flat(a) and additionally,

∑
j≥i bj ≤

∑
j≥i aj for all i ∈ Z. We denote the set

of all b ≤c a by C≤a. Given a positive integer r, a distinguished subset of C≤a, denoted by C(r)≤a,

1Recall that the code a = (ai)i∈Z of a permutation w = · · ·w−1w0w1 · · · of Z is defined by setting ai = |{j >
i | wi > wj}|.
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comprises those b that satisfy supp(b) ⊆ [r]. Note that in contrast to C≤a which is infinite except
when a has weight zero, the set C(r)≤a is finite.
Remark 2.3. For the sake of clarity, when dealing with explicit instances of compositions a =
(. . . , a−1, a0, a1, . . . ) we suppress leading and trailing zeros and furthermore place a bar between a0
and a1 to clearly show where the positively indexed terms in the sequence begin. If ai = 0 for all
i ≤ 0, we omit the bar and write a as a finite sequence, which is the more conventional form.

Let a = (0, 2, 0, 2) ∈ S4
Z. Then flat(a) = (2, 2). In (2.3), we list all elements of C(4)≤a after omitting

brackets and commas for brevity.
{0202, 0220, 2002, 2020, 2200, 1102, 1120, 1111, 0211, 2011, 2101, 2110}.(2.3)

On the other hand, if a = (1|0, 2, 0, 1), then C(4)≤a is clearly empty as compositions b ≤c (1|0, 2, 0, 1)
cannot satisfy supp(b) ⊆ [4].

Given a positive integer r and a composition a ∈ SZ, the fundamental slide polynomial Fa(xr)
[4, Definition 3.6] is defined as

Fa(xr) :=
∑

b∈C(r)≤a

xb11 · · ·x
br
r .(2.4)

Henceforth we refer to fundamental slide polynomials as slide polynomials. The expansion of the
slide polynomial indexed by a = (0, 2, 0, 1) is

F0201(x4) = x22x4 + x22x3 + x21x4 + x21x3 + x21x2 + x1x2x4 + x1x2x3.(2.5)
If a = (1|0, 2, 1, 0), then Fa(x4) = 0.

A simple triangularity argument [4, Theorem 3.9] implies that the set of slide polynomials
Fa(xr) as a ranges over compositions satisfying supp(a) ⊆ [r] is a basis for the polynomial ring
Q[x1, . . . , xr]. Note that Fa is in fact a fundamental quasisymmetric polynomial when a is “quasi-
flat” in the language of [4]. We refer the reader to [4] for other aspects of slide polynomials, in
particular the relation to Schubert polynomials.

2.4. Restricted (P, ω)-partitions. All our posets are finite. Given a poset P , we always assume
that its ground set is identified with [|P |]. We depict P using its Hasse diagram. We use ⪯P

to denote the order relation on P , and cover relations are denoted by ≺·P . A labeling of P is a
map ω : [n] → [n] where n := |P |. We refer to the ordered pair (P, ω) as a labeled poset. A
(P, ω)-partition is a map f : [n]→ Z>0 satisfying the conditions that

(1) if i ≺·P j and ω(i) < ω(j), then f(i) ≤ f(j).
(2) if i ≺·P j and ω(i) > ω(j), then f(i) < f(j).

Given a map ρ : [n]→ Z, we refer to the datum (P, ω, ρ) as a ρ-restricted labeled poset. Additionally,
a (P, ω)-partition f that satisfies f(i) ≤ ρ(i) for all i ∈ [n] is said to be a ρ-restricted (P, ω)-partition
[3]. We denote the set of ρ-restricted (P, ω)-partitions by A (P, ω, ρ).
Remark 2.4. Assaf-Bergeron [3] work under the assumption that the ground set of P is identified
with [|P |] via the labeling ω. Since we will talk about graphs and posets arising from acyclic
orientations thereon, the ground set of our posets will be vertex set of our graph (already identified
with [n] for some n); the labelings ω we employ might be different. Throughout this article, in
our Hasse diagrams, the numbers within nodes correspond to the labeling ω.
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Figure 3. A ρ-restricted labeled poset and its two linear extensions.

Assaf-Bergeron [3, Section 3] associate a polynomial F(P,ω,ρ) with the triple (P, ω, ρ), mimicking
the classical theory of quasisymmetric functions attached to (P, ω)-partitions. More specifically,
define F(P,ω,ρ) as

F(P,ω,ρ) :=
∑

f∈A (P,ω,ρ)

xf(1) · · ·xf(n).(2.6)

It is possible that A (P, ω, ρ) is empty, for instance if ρ takes a value in Z≤0. In such cases F(P,ω,ρ)

equals 0. For the triple (P, ω, ρ) on the left in Figure 3, assume that the ground set of P is identified
with [3] via ω. One can check that

F(P,ω,ρ) = (x1x
2
2 + x1x2x3) + (x22x3 + x1x2x3 + x21x3 + x21x2)

= F120(x3) + F111(x3) + F021(x3).(2.7)

Observe that summands within the first pair of parentheses are from the linear order in the middle
in Figure 3, whereas those within the second pair are from the linear order on the right.

It is worth remarking that even though in our earlier example F(P,ω,ρ) is slide-positive, this is not
true in general. See [3, Example 3.12] for a revealing example. We are especially interested in the
fact that the rightmost linear order in Figure 3 contributes a single slide polynomial. To explore
this aspect further, we need to introduce more notions attached to ρ-restricted linear orders.

2.5. Linear order with restrictions. Consider a triple (L, ω, ρ) where L is a linear order. Ob-
serve that in view of ω, some inequalities imposed by ρ might be redundant. Figure 4, on the left,
depicts a linear order L given as 1 ≺·L 2 ≺·L 3 ≺·L 4 ≺·L 5. The labeling ω going from the minimal
element in L to the maximal gives the permutation 23154 in one-line notation. The restriction ρ
is defined by ρ(1) = 1, ρ(2) = 4, ρ(3) = 5, ρ(4) = 6, and ρ(5) = 4. Since ω(5) = 4 < ω(4) = 5, we
infer that a ρ-restricted (L, ω)-partition f must satisfy f(4) < f(5) in addition to f(4) ≤ ρ(4) = 6
and f(5) ≤ ρ(5) = 4. Clearly, the restriction ρ(4) = 6 can be replaced with the tighter version
ρ(4) = 3 without altering the set of ρ-restricted (L, ω)-partitions.

In general, by replacing each inequality imposed by ρ with the tightest one, we obtain a new
restriction map ρ̄L with the key property that A (L, ω, ρ) = A (L, ω, ρ̄L). Observe that ρ̄L does
depend on ω, but we suppress this dependence and hope that no confusion results. We next
formalize this procedure of finding ρ̄L. Given a positive integer n and a permutation π ∈ Sn, let L
be the linear order π(1) ≺·L · · · ≺·L π(n) endowed with labeling ω and restriction ρ. We define ρ̄L

recursively top-down starting from the maximum element of L. More precisely, for i from n down
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to 1, set

ρ̄L(π(i)) :=


ρ(π(n)) i = n
min{ρ̄L(π(i+ 1)), ρ(π(i))} ω ◦ π(i) < ω ◦ π(i+ 1)
min{ρ̄L(π(i+ 1))− 1, ρ(π(i))} ω ◦ π(i) > ω ◦ π(i+ 1).

(2.8)

Note in particular that ρ̄L depends on the descent set of the permutation ω ◦ π, that is, the
permutation obtained by reading the labels from the minimal element to the maximal element.
For the linear order from Figure 4 encountered earlier, π is the identity permutation, and the
permutation ω ◦ π is 23154. The reader can check that ρ̄L is exactly as depicted in the linear order
in the middle in Figure 4.
Remark 2.5. Assaf-Bergeron [3, Definition 3.2] discuss the procedure of find the ‘tightest’ restriction
map more generally for posets. Their definition is therefore a bit more involved, but in the case of
linear orders one obtains the description in (2.8).
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Figure 4. A linear order L with redundant ρ and then with ρ̄L.

We use ρ̄L to generalize the notion of descent compositions to account for the restriction map.
Define the reduced weak descent composition of (L, ω, ρ), denoted by rdes(L, ω, ρ), as follows. Let
i1 < · · · < ik be all the descents in ω ◦ π. Consider the chains C1, . . . , Ck+1 defined by setting

Cj := π(ij−1 + 1) ≺·L · · · ≺·L π(ij),(2.9)

where i0 := 0 and ik+1 := n. For j = 1, . . . , k + 1, set cj = ρ̄L(π(ij−1 + 1)), and define the cj-th
part of rdes(L, ω, ρ) to equal |Cj |, and set all other parts to 0. Note that π(ij−1+1) is the minimal
element of the chain Cj , so the values cj are obtained by simply evaluating ρ̄L at the minimal
element of each chain Cj from j = 1 through k + 1. For the rightmost linear order in Figure 4,
the dashed edges denote the descent edges whose removal results in the chains C1, C2 and C3 from
bottom to top. Picking the smallest value of ρ̄L in each shaded region tells us that c1 = 1, c2 = 3,
c3 = 4. Since |C1| = |C2| = 2 and |C3| = 1, we infer that rdes(L, ρ) = (2, 0, 2, 1). The reader may
further verify that

F(L,ω,ρ) = F2021(x4) + F1121(x4).(2.10)
We remark here that we could have replaced the alphabet x4 above with any xr for any r ≥ 4.
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Remark 2.6. Recall the folklore bijective correspondence between strong compositions of a nonneg-
ative integer n and subsets of [n − 1]. Suppose that S ⊆ [n − 1] maps to the strong composition
comp(S). If Des(π) denotes the descent set of π, then from the definition of rdes(L, ω, ρ), it follows
that flat(rdes(L, ω, ρ)) = comp(Des(π)) [3, Equation 3.4], which explains the name reduced weak
descent composition.

In our example, we see that Frdes(L,ω,ρ) is a term in the expansion of F(L,ω,ρ) in slide polynomials.
We are particularly interested in case where it is the only term. To this end, we have the following
result of Assaf-Bergeron [3, Proposition 3.10].

Proposition 2.7. Consider a ρ-restricted labeled poset (L, ω, ρ) where L is a linear order on [n]
given by π(1) ≺·L · · · ≺·L π(n). Suppose that for all i ∈ [n− 1], we have that ω ◦ π(i) < ω ◦ π(i+ 1)
implies ρ̄L(π(i)) = ρ̄L(π(i+ 1)). Then we have that

F(L,ω,ρ) = Frdes(L,ω,ρ)(xr).

where r ≥ max{ρ̄L(π(i)}i∈[n].

Going back to the rightmost linear order in Figure 3, we see that F(L,ω,ρ) equals the slide
polynomial F021(x3) by Proposition 2.7.

3. Slide-positivity of X̃D(xr; t)

We proceed to establish our central result that X̃D(xr; t) expands in terms of slide polynomials
with coefficients in N[t]. Our approach follows the proof of [17, Theorem 3.1], except that we obtain
slide polynomials where Shareshian-Wachs obtain fundamental quasisymmetric polynomials. More
precisely, we first realize X̃D as a (P ; ρ)-partition generating function and write these as sums of
slide fundamentals following [3]. We then prove that the coefficients that appear belong to N[t],
which is done in Lemmas 3.1 and 3.2, using another result of [3].

Consider any graph G = ([n], E). For π ∈ Sn, define invG(π) to be the number of G-inversions
of π, that is,

invG(π) = |{{i, j} ∈ E | i < j and π(i) > π(j)}|.(3.1)
Given a poset P on [n], we say that i ∈ [n− 1] is a P -descent of π if π(i+ 1) ≺P π(i). We denote
the set of P -descents of π by DesP (π). If i and j are comparable in P , we denote this by i ∼P j.
Otherwise, we write i ≁P j. Recall that the incomparability graph of a poset P is the simple graph
whose vertex set is [n] and edges are given by {i, j} where i ≁P j.

From this point onward, fix a partial Dyck path D ∈ Pn,r. Let G := GD be the corre-
sponding Dyck graph, and let ρ := ρD be the restriction induced by D. Let E denote the set of
edges of G. We realize G as the incomparability graph of a poset PD on [n] as follows: declare
i ≺PD

j if and only if j > i and {i, j} /∈ E. Given π ∈ Sn, let Lπ be the linear order on the vertices
of G given by π(1) ≺·Lπ · · · ≺·Lπ π(n). This linear order induces an acyclic orientation o := oπ of G
obtained by directing {π(i), π(j)} ∈ E for i < j from π(j) to π(i). Observe that o gives rise to a
poset Po on [n] by taking the transitive closure of the relation given by j ≺Po i if there is a directed
edge from i to j in o. Furthermore, Po and Lπ also inherit the restriction map ρ. For the acyclic
orientation o in Figure 5, the Po is shown on the left in Figure 6. A permutation π which induces
this o is 645123.
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≤1 ≤4 ≤5 ≤5 ≤5 ≤5

Figure 5. An acyclic orientation o of the graph in Figure 2.

We say that a coloring f of G is compatible with o if for every directed edge i → j we have
f(i) > f(j). For X̃D(xr; t), we are interested in the proper colorings f : [n] → Z>0 that further
satisfy f(i) ≤ ρ(i). Since every proper coloring is compatible with a unique acyclic orientation,
we can partition the set of ρ-restricted proper colorings based on compatibility. This leads us to
interpret such proper colorings as ρ-restricted (Po, ω)-partitions for an appropriate ω.

We seek a labeling ωo that induces strict inequalities on all cover relations in Po. More precisely,
since we are interested in colorings compatible with o, our labeling ωo must satisfy ωo(i) < ωo(j)
if j ≺·Po i. We construct ωo as follows. Initialize ctr to 1, G to G, and perform the following steps.

(1) Find the largest i such that vertex i in G has indegree 0 with respect to o.
(2) Set ωo(i) = ctr, and subsequently increment ctr by 1.
(3) Remove the vertex i along with all edges incident to it, and let G be the new directed graph

obtained with the acyclic orientation inherited from o. If there is at least one vertex in G,
return to step (1), else terminate.

For the o in Figure 5, this algorithm gives ω(1) = 6, ω(2) = 5, ω(3) = 1, ω(4) = 4, ω(5) = 2,
and ω(6) = 3. The triple (Po, ωo, ρ) is depicted on the right in Figure 6. On the left, the numbers
outside nodes represent the numbering inherited from the graph. On the right, the numbers within
nodes represent the labeling ωo.

1

2

3

4

5

6
≤1

≤4

≤5

≤5

≤5

≤5
6

5

1

4

2

3
≤1

≤4

≤5

≤5

≤5

≤5

Figure 6. The poset Po (left) and the triple (Po, ωo, ρ) (right).

We are ready to establish a key lemma that relates PD-descents of π and ascents in ωo ◦ π.

Lemma 3.1. For i ∈ [n− 1], we have that

π(i) ≻PD
π(i+ 1)⇐⇒ ωo ◦ π(i) < ωo ◦ π(i+ 1).

Proof. We establish the forward implication first. Assume π(i) ≻PD
π(i + 1). From the definition

of PD we infer the following two facts: first, π(i) > π(i+ 1), and second, {π(i+ 1), π(i)} /∈ E.
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We claim that π(i) ≁Po π(i+1). Indeed, if this is not the case, then there exists a directed path
from π(i+1) to π(i) in o, and thereby, a vertex π(j) where j ̸= i, i+1 that lies on this path. Since
there is a directed path from π(i + 1) to π(j), we infer that i + 1 > j. On the other hand, the
directed path from π(j) to π(i) implies j > i. It follows that i+1 > j > i, which is clearly absurd.

Next we show that ωo(π(i)) < ωo(π(i+1)). Assume to the contrary that ωo(π(i)) > ωo(π(i+1)),
and consider the instant in our labeling algorithm when π(i+1) is assigned a label. As π(i) > π(i+1)
and π(i) is unlabeled at that instant, there is an unlabeled vertex π(i1) such that there is an edge
in o directed from π(i1) to π(i). Furthermore, π(i1) ≁Po π(i+1). If not, the existence of a directed
path from π(i+ 1) to π(i1) would imply that π(i+ 1) ∼Po π(i), which is false. On the other hand,
the existence of a directed path from π(i1) to π(i+ 1) would contradict the fact that our labeling
algorithm assigns a label to π(i+ 1) before π(i1).

Repeating this argument, we can construct a directed path π(ik) → π(ik−1) → · · · → π(i1) →
π(i0) = π(i) with the property that for 0 ≤ j ≤ k, each π(ij) is unlabeled and satisfies π(ij) ≁Po

π(i + 1). Consider a maximal such path. Then all vertices with edges directed towards π(ik) are
already labeled. This in turn implies that π(ik) < π(i+ 1), as the opposite inequality implies that
π(ik) has a smaller label π(i+ 1), which is not the case.

Now note that there must exist a 1 ≤ j ≤ k such that π(ij) < π(i + 1) but π(ij−1) > π(i + 1).
Indeed, if such a j did not exist, then the edge {π(i1), π(i)} would imply that {π(i+ 1), π(i)} ∈ E
as G is a Dyck graph. But we have already established that {π(i + 1), π(i)} /∈ E. Now pick any
j whose existence we just established. Again using the fact that G is a Dyck graph, we conclude
that {π(i+ 1), π(ij−1)} ∈ E, which in turn implies that π(ij−1) ∼Po π(i+ 1), which is false. This
completes the proof of the forward direction.

We keep our exposition on the reverse implication brief. Assuming ωo ◦ π(i) < ωo ◦ π(i + 1),
we need to show that π(i) ≻PD

π(i + 1). Once again, observe that π(i) ≁Po π(i + 1). If not,
we would infer the existence of a directed path from π(i + 1) to π(i) in o, which in turn would
contradict our hypothesis that ωo(π(i)) < ωo(π(i + 1)). To establish that π(i) ≻PD

π(i + 1), we
proceed by contradiction. There are two possibilities if π(i) ⊁PD

π(i+1): either π(i) ≁PD
π(i+1)

or π(i+1) ≻PD
π(i). In the former, we have {π(i), π(i+1)} ∈ E, which then is necessarily directed

from π(i + 1) to π(i) in o. This implies ωo(π(i + 1)) < ωo(π(i)), contrary to our assumption.
Finally, the case π(i+1) ≻PD

π(i) remains. The argument for this is very similar to that presented
in the proof of the forward direction. We omit the details. □

In view of the previous lemma, we now establish that F(Lπ ,ωo,ρ) is equal to a slide polynomial. To
this end, we recast the reduced weak descent composition rdes(Lπ, ωo, ρ) defined in Subsection 2.5
in terms of PD-descents of π rather than the descent set of ωo ◦ π. Indeed, using Lemma 3.1, we
can redefine ρ̄Lπ as follows: For i from n down to 1, set

ρ̄Lπ(π(i)) :=


ρ(π(n)) i = n
min{ρ̄Lπ(π(i+ 1)), ρ(π(i))} π(i) ≻PD

π(i+ 1)
min{ρ̄Lπ(π(i+ 1))− 1, ρ(π(i))} π(i) ⊁PD

π(i+ 1).
(3.2)

The above formulation removes the dependence of the recursive definition of ρ̄Lπ on ωo. The
procedure for computing rdes(Lπ, ωo, ρ) is the same, except the role played by descents of ωo ◦ π is
now essayed by PD-ascents of π. To emphasize the suppression of ωo, we write rdes(Lπ, ρ) instead
of rdes(Lπ, ωo, ρ). The following result explains how slide polynomials enter our picture.
Lemma 3.2. The weight generating function F(Lπ ,ωo,ρ) equals the slide polynomial Frdes(Lπ ,ρ)(xr).
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Proof. By Proposition 2.7 and Lemma 3.1, it suffices to verify that π(i) ≻PD
π(i + 1) implies

ρ̄Lπ(π(i)) = ρ̄Lπ(π(i + 1)). This is immediate as π(i) ≻PD
π(i + 1) implies ρ(π(i)) ≥ ρ(π(i + 1)).

The recursive description of ρ̄Lπ in (3.2) implies the claim. Note that our choice of the alphabet
xr is justified as ρ(i) ≤ r for all i ∈ [n]. □

As an example, consider the graph G coming from a partial Dyck path D ∈ P3,3 in Figure 7.
The corresponding PD has only relation: 3 ≻PD

1. The six linear orders on the vertices of G along
with the modified restrictions ρ̄Lπ are depicted in Figure 8. The F(Lπ ,ωo,ρ) corresponding to each
linear order from left to right are: F(1,1,1)(x3), F(1,1,1)(x3), F(2,0,1)(x3), F(1|2)(x3), F(1|1,0,1)(x3), and
F(1,1|1)(x3). Note that although the last three of these are in fact 0, they will acquire meaning in
Subsection 3.1.

6

1
2

3
4

5

1 2 3
≤1 ≤3 ≤3

Figure 7. A partial Dyck path D ∈ P3,3 and associated GD.
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1

3

3

2

1

≤1

≤2

≤3

≤1

≤2

≤3

≤1

≤1

≤3

≤0

≤1

≤1

≤0

≤1

≤3

≤−1

≤0

≤1

Figure 8. The linear orders corresponding to GD in Figure 7 and the restrictions
ρ̄Lπ .

Theorem 3.3. The polynomial X̃D(x; t) is slide-positive and we have

X̃D(xr; t) =
∑
π∈Sn

tinvG(π)Frdes(Lπ ,ρ)(xr).

Proof. Throughout this proof, denote by PC(G, ρ) the set of proper colorings f : [n] → Z>0 of G
that satisfy f(i) ≤ ρ(i) for all i ∈ [n]. Let AO(G) be the set of acyclic orientations of G. We have
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that
X̃D(xr; t) =

∑
f∈PC(G,ρ)

tdesG(f)xf(1) · · ·xf(n) =
∑

o∈AO(G)

t|{i→j in o | i<j}|
∑

f∈PC(G,ρ)
f compatible with o

xf(1) . . . xf(n)

=
∑

o∈AO(G)

t|{j≺Po i | i<j,{i,j}∈E}|F(Po,ωo,ρ).(3.3)

Let L (Po, ωo, ρ) denote the set of linear extensions of Po along with the inherited labeling ωo and
restriction ρ. By [3, Corollary 3.15], we have that F(Po,ωo,ρ) may be written as a sum over elements
of L (Po, ωo, ρ):

X̃D(xr; t) =
∑

o∈AO(G)

t|{j≺Po i | i<j,{i,j}∈E}|
∑

L∈L (Po,ωo,ρ)

F(L,ωo,ρ).(3.4)

As described before, any linear order L on the vertices of G, say π(1) ≺·L · · · ≺·L π(n), induces
a unique acyclic orientation o, in addition to uniquely determining ωo. This allows us to rewrite
the sum on the right hand side of (3.4) as ranging over linear orders on the vertices of G, or
equivalently, permutations on [n]. In this context, it is easily checked that t|{j≺Po i | i<j,{i,j}∈E}| is
tinvG(π). Lemma 3.2 implies that we can replace F(L,ωo,ρ) in (3.4) with Frdes(Lπ ,ρ)(xr). The claim
now follows. □

For the partial Dyck path D ∈ P3,3 in Figure 7, we have the following expansion:

X̃D(x3; t) = F111(x3) + tF111(x3) + tF201(x3) + tF1|2(x3) + tF1|101(x3) + t2F11|1(x3).(3.5)
In writing our weak compositions we have omitted commas and parentheses. Recall also that the
vertical bar separates the positively indexed parts from the rest. We proceed to address the question
of how the expansion in terms of slides in the context of Dyck graphs relates to the expansion
for chromatic quasisymmetric functions in terms of fundamental quasisymmetric functions. The
contents of the next subsection are heavily inspired by the recent work of Lam-Lee-Shimozono [12].

3.1. The stable limit. For this subsection, let x denote the set of commuting indeterminates
{xi | i ∈ Z} endowed with the total order xj < xj+1 for all j ∈ Z. Furthermore, set x≤r := {xi | i ≤
r}. In particular, x− := x≤0. For a ∈ SZ we obtain a well-defined monomial xa =

∏
i∈Z x

ai
i .

Let R be the Q-algebra of formal power series f in the variables xi for i ∈ Z such that f has
bounded total degree and there is an N ∈ Z such that the variables xi do not appear in f for
i > N . We say that f is back-quasisymmetric if there exists a b ∈ Z such that for any two sequences
i1 < · · · < ik ≤ b and j1 < · · · < jk ≤ b and any strong composition α = (α1, . . . , αk), we have
that the coefficient of xα1

i1
. . . xαk

ik
in f equals that of xα1

j1
. . . xαk

jk
. Let ←−RQsym denote the subset of

back-quasisymmetric elements of R.
For a ∈ SZ, consider the element ←−F a(x) ∈ R defined as

←−
F a(x) =

∑
b∈C≤a

xb.(3.6)

The reader should compare the definition of←−F a(x) with that of slide polynomials in (2.4). Replacing
the indexing set C(r)≤a by C≤a allows us to obtain a formal power series rather than a polynomial.
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It is clear that ←−F a(x) ∈
←−
RQsym, and we refer to it as the ‘backstable’ limit of the slide polynomial

←−
F a(xr) where r is any integer such that a ∈ Sr

Z.
At this stage, it should be clear how to define a backstable analogue of the chromatic nonsym-

metric polynomial. Indeed, instead of partial Dyck paths starting at the coordinates (0, r), we
consider infinite partial Dyck paths D that begin at (−∞, r) and take only east steps till (0, r).
Then define the backstable limit

←−X D(x; t) as follows (cf. equation (2.2)).
←−X D(x; t) =

∑
proper colorings f :[n]→Z

f(i)≤ρD(i)

tdesG(f)xf(1) · · ·xf(n)(3.7)

Note that the only deviation from the definition of the chromatic nonsymmetric polynomial is that
we are allowing ‘nonpositive colors’. More importantly though, note that the negative colors do
not play a role in determining the restriction map ρ := ρD. It follows from definition that

←−X D(x; t)
is back-quasisymmetric. In fact, one can replace each slide polynomial Frdes(Lπ ,ρ) appearing in the
expansion of X̃D(xr; t) in Theorem 3.3 by ←−F rdes(Lπ ,ρ)(x) and thus obtain the following theorem.

Theorem 3.4. The formal power series
←−X D(x; t) is backstable slide-positive and we have the

expansion
←−X D(x; t) =

∑
π∈Sn

tinvG(π)←−F rdes(Lπ ,ρ)(x).

We now describe how to recover the expansion of the chromatic quasisymmetric function in
terms of fundamental quasisymmetric functions [17, Theorem 3.1] from Theorem 3.4. Following
[12, Section 3.4], consider the map η0 on ←−RQsym that sets xi = 0 for i > 0. Clearly, η0(

←−X D(x; t)) =

X̃D(x−; t), where we have abused notation to denote the chromatic quasisymmetric function of GD

by X̃D. Thus to understand the expansion in terms of fundamental quasisymmetric functions, it
suffices to understand η0(

←−
F rdes(Lπ ,ρ)(x)).

To this end, we introduce some notation and establish a general result. Let QSym[x−] denote
the ring of quasisymmetric functions in the variables {xi | i ≤ 0}. Given a strong composition
α, we denote by Fα(x−) the fundamental quasisymmetric function indexed by α in the ordered
alphabet x−. Given strong compositions α = (α1, . . . , αℓ) and β = (β1, . . . , βm), let α ·β :=
(α1, . . . , αℓ, β1, . . . , βm) denote concatenation and α⊙β := (α1, . . . , αℓ + β1, . . . , βm) denote near-
concatenation. For instance, if α = (2, 1, 3) and β = (1, 2), then α ·β = (2, 1, 3, 1, 2) and α⊙β =
(2, 1, 4, 2).

Returning to our interest in understanding η0(
←−
F rdes(Lπ ,ρ)(x)), recall that rdes(Lπ, ρ) belongs to

Sr
Z. Furthermore, by the recursive definition of ρ̄Lπ , we can show that rdes(Lπ, ρ) possesses the

following crucial property: if rdes(Lπ, ρ)i > 0 for some i ≤ 0, then for all i ≤ j ≤ 0, we have
rdes(Lπ, ρ)j > 0. We refer to compositions with this property as tail-strong compositions. Given
a tail-strong composition a ∈ Sr

Z, our next lemma expresses ←−F a(x) explicitly as an element of
QSym[x−]⊗Q[x1, . . . , xr]. The proof of this lemma is simply a matter of unraveling the definitions
and hence is omitted.

Lemma 3.5. Let a ∈ Sr
Z be tail-strong. Let α = flat((. . . , a−2, a−1, a0)) and a+ = (a1, . . . , ar). A

decomposition of flat(a+) as γ ⊙ δ or γ · δ naturally gives us two sequences aγ+ = (aγ1 , . . . , a
γ
r ) and
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aδ+ = (aδ1, . . . , a
δ
r) whose component-wise sum is a+. We have the following expansion:

←−
F a(x) =

∑
γ⊙δ=flat(a+) or γ·δ=flat(a+)

Fα·γ(x−)Faδ
+
(xr).

We illustrate the content of the preceding theorem with an example. Let a ∈ S4
Z be (1, 2|0, 2, 0, 1).

Then a+ = (0, 2, 0, 1) and α = (1, 2). The decomposition of flat(a+) = (2, 1) as γ ⊙ δ where
γ = (1) and δ = (1, 1) yields aγ+ = (0, 1, 0, 0) and aδ+ = (0, 1, 0, 1). This decomposition contributes
F(1,2,1)(x−)F(0,1,0,1)(x1, . . . , x4) to ←−F a(x). By Lemma 3.5, the complete expansion is

←−
F a(x) = F12(x−)F0201(x4) + F121(x−)F0101(x4) + F122(x−)F0001(x4) + F1221(x−).(3.8)

From Lemma 3.5, we see that η0(
←−
F a(x)) = Fflat(a)(x−) for any tail-strong composition. Applying

η0 to both sides of the expansion in Theorem 3.4, we obtain

X̃D(x−; t) =
∑
π∈Sn

tinvG(π)Fflat(rdes(Lπ ,ρ))(x−)(3.9)

Clearly, flat(rdes(Lπ, ρ)) only depends on π, and from its definition we can show that it equals
the strong composition of n corresponding to the [n − 1] \ DesPD

(π); see Remark 2.6. Thus,
flat(rdes (Lπ, ρ)) = comp ([n− 1] \DesPD

(π)) = comp (DesPD
(π))t, where αt denotes the strong

composition obtained by reflecting the ribbon diagram (in French notation) representing α across
the line y = x. In summary, we obtain the following result that the reader should compare to [17,
Theorem 3.1].

Corollary 3.6. The chromatic quasisymmetric function corresponding to Dyck graphs has the
following expansion in the basis of fundamental quasisymmetric functions:

X̃D(x−; t) =
∑
π∈Sn

tinvG(π)Fcomp(DesPD
(π))t(x−).

4. Further remarks

We conclude our article with some additional remarks.
(1) The precise definition of X̃D(xr; t) is motivated by Carlsson and Mellit’s proof of the Shuffle

Conjecture [8], in which the authors define and study the “characteristic function” of a
partial Dyck path. This characteristic function contains a symmetric and a nonsymmetric
component; the nonsymmetric component is equivalent to our chromatic nonsymmetric
polynomial. Carlsson and Mellit briefly consider the case where the first r vertices receive
a different coloring, leading to different restriction functions. It would be interesting to see
if these polynomials still expand positively in the slide basis, or if they lead naturally into
the theory of “basements” in nonsymmetric polynomials [1].

(2) Haglund and Wilson [10] postulated that their chromatic nonsymmetric polynomials are
key-positive. Unfortunately, we found counterexamples with Dyck graphs on 6 vertices.
Since our chromatic nonsymmetric polynomial differ from theirs by a symmetric factor of
x1 · · ·xr, we also have that our X̃D(xr; t) are not key-positive either. That being said, a
vast number of instances we considered were key-positive indeed. This raises the question:
Characterize D such that X̃D(xr; t) is key-positive.
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