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Abstract. We prove that the enumerative polynomials of Stirling multipermutations by
the statistics of plateaux, descents and ascents are partial γ-positive. Specialization of our
result to the Jacobi-Stirling permutations confirms a recent partial γ-positivity conjecture
due to Ma, Yeh and the second named author. Our partial γ-positivity expansion, as well
as a combinatorial interpretation for the corresponding γ-coefficients, are obtained via the
machine of context-free grammars and a group action on Stirling multipermutations. Be-
sides, we also provide an alternative approach to the partial γ-positivity from the stability
of certain multivariate polynomials on Stirling multipermutations. Moreover, we prove the
partial γ-positivity for the enumerators of multipermutations by plateaux, descents and
ascents via introducing a group action on words. Since multipermutations without any
plateau are Smirnov words, our result generalizes a γ-positivity result due to Linusson,
Shareshian and Wachs in this special case. Interestingly, our second action on multiper-
mutations applies also to Stirling multipermutations and results in another combinatorial
expansion for their partial γ-positivity. Finally, using a modification of our second group
action and Foata’s first fundamental transformation, we prove the partial γ-positivity for
the enumerators of multipermutations by fixed points, excedances and drops, generalizing
another result of Linusson, Shareshian and Wachs for derangements of a multiset.

1. Introduction

Let A be an alphabet whose elements are totally ordered. For a word w = w1 · · ·wn ∈
An, an index i, 0 ≤ i ≤ n, is an ascent (resp. a plateau, a descent) of w if wi < wi+1

(resp. wi = wi+1, wi > wi+1), where we use the convention that w0 = wn+1 = −∞.
Here −∞ is considered as an extra element smaller than all letters in A. For instance, if
w = 11211 ∈ P5, then 0, 2 are ascents, 1, 4 are plateaux and 3, 5 are descents of w. Let
asc(w) (resp. plat(w), des(w)) be the number of ascents (resp. plateaux, descents) of w.
This work is motivated by

• a partial γ-positivity conjecture of Ma, Ma and Yeh [35] concerning the study of
these three statistics on the so-called Jacobi–Stirling permutations introduced in [24];

• and two γ-positivity expansion formulae of Linusson, Shareshian and Wachs [33]
for the descent polynomials on Smirnov words and for the excedance polynomials
on multiset derangements, which were established using Rees products of posets.

The purpose of this paper is to provide several proofs of the partial γ-positivity conjecture
for Jacobi–Stirling permutations and generalize Linusson–Shareshian–Wachs’ result to the
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context of partial γ-positivity via introducing a word version of the Foata–Strehl group
actions [21] on permutations.

Gamma-positive polynomials arise frequently in enumerative combinatorics and have
recent impetus coming from enumerative geometry [23, 38] and poset homology [33]; see
also the survey of Athanasiadis [4]. A univariate polynomial f(x) is said to be γ-positive if
it can be expanded as

f(x) =

⌊n
2
⌋∑

k=0

γkx
k(1 + x)n−2k

with γk ≥ 0. A bivariate polynomial h(x, y) is said to be homogeneous γ-positive, if h(x, y)
is homogeneous and h(x, 1) is γ-positive. This is equivalent to say that h(x, y) can be
expressed as

h(x, y) =

⌊n
2
⌋∑

k=0

γk(xy)
k(x+ y)n−2k

with γk ≥ 0. Alternatively, h(x, y) is a symmetric function in x and y which is e-positive,
i.e., h(x, y) can be written as a non-negative linear combination of the elementary sym-
metric functions e2k12n−k(x, y). One of the typical examples arising from permutation sta-
tistics due to Foata and Schüzenberger [20] is the bivariate Eulerian polynomial An(x, y) =∑

π∈Sn
xasc(π)ydes(π), where Sn is the set of all permutations of [n] := {1, 2, . . . , n}.

A trivariate polynomial p(x, y, z) =
∑

i si(x, y)z
i is said to be partial γ-positive if every

si(x, y) is homogeneous γ-positive. The first example of partial γ-positive polynomial that
we can find in the literature (see [32, 40]) is the trivariate Eulerian polynomial

An(x, y, z) =
∑
π∈Sn

xexc(π)ydrop(π)zfix(π),

where exc(π) (resp. drop(π), fix(π)) denotes the number of excedances (resp. drops, fixed
points) of π. Note that An(x, y) = An(x, y, y) by a fundamental bijection on Sn (see [42,
Sec. 1.3]). Recently, by the change of grammars, Ma, Ma and Yeh [35] investigated the
partial γ-positivity of the distribution polynomials of ascents, descents and plateaux over
Stirling permutations introduced by Gessel and Stanley [25]. Here we will extend their
result to Stirling permutations of a multiset.

Let us first give an overview of the Stirling permutations. It is well known [20] that the
n-th Eulerian polynomials An(t) := An(1, t) satisfies Euler’s classical identity∑

k≥1

kntk =
An(t)

(1− t)n+1
.

Recall that the Stirling number of the second kind S(n, k) enumerates the set partitions
of [n] with k blocks. In order to interpret the second-order Eulerian polynomials Cn(t)
appearing as

(1.1)
∑
k≥0

S(n+ k, k)tk =
Cn(t)

(1− t)2n+1
,



MULTIPERMUTATIONS AND PARTIAL γ-POSITIVITY 3

Gessel and Stanley [25] invented the Stirling permutations. A Stirling permutation of order
n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that for each i ∈ [n], all entries
between the two occurrences of i are larger than i. Gessel and Stanley [25] provided three
different proofs for the interpretation

Cn(t) =
∑
π∈Qn

tdes(π),

where Qn denotes the set of Stirling permutations of order n. Interestingly, the three
statistics asc, plat and des are equidistributed over Qn, as was shown by Bóna in [7] where
the statistic plat was first considered.

The Stirling permutations extends naturally to permutations of a general multiset. For
each vector m = (m1,m2, . . . ,mn) ∈ Pn, denote by Sm the set of all permutations of the
general multiset {1m1 , 2m2 , . . . , nmn}, where i appears mi times. A multipermutation in Sm

is a generalized Stirling permutation (or Stirling multipermutation) if all entries between any
two occurrences of i are larger than i for each i ∈ [n]. Let Qm be the set of all generalized
Stirling permutations in Sm. Note that Qm = Qn when m = (2, 2, . . . , 2). The generalized
Stirling permutations and various statistics over them have been studied in [12, 26, 28]. In
particular, Brenti [12] showed that the descent polynomial over Qm has only real roots for
each m ∈ Pn.

Let us consider the trivariate polynomials over generalized Stirling permutations

Sm(x, y, z) =
∑
π∈Qm

xasc(π)ydes(π)zplat(π).

In order to state our first expansion formula for the partial γ-positivity of Sm(x, y, z), we
need to introduce more statistics on multipermutations.

Definition 1.1. Let π = π1π2 · · · πm ∈ Sm, where m =
∑n

i=1 mi. As usual, we set
π0 = πm+1 = −∞. A letter k ∈ [n] is said to be multiple if mk > 1; and single, otherwise.
An index i ∈ [m] is called a multiple (resp. single) descent of π if πi > πi+1 and πi is
multiple (resp. single). A double-ascent (resp. double-descent, peak, valley, ascent-plateau,
descent-plateau) of π is an index i ∈ [m] such that πi−1 < πi < πi+1 (resp. πi−1 > πi > πi+1,
πi−1 < πi > πi+1, πi−1 > πi < πi+1, πi−1 < πi = πi+1, πi−1 > πi = πi+1). It is clear that if i
is a peak, then πi must be single. We further distinguish a double-descent i to be single or
multiple according to πi is single or multiple. A descent-plateau i is free if there does not
exist an integer ℓ, 1 ≤ ℓ < i, such that πℓ = πi. A plateau i of π is said to be unmovable if
i is neither a free descent-plateau nor an ascent-plateau. Let us introduce the statistics of
π by

• dasc(π) = #{i ∈ [m] : πi−1 < πi < πi+1}, the number of double-ascents of π;
• sddes(π) := #{i ∈ [m] : πi−1 > πi > πi+1 and πi is single}, the number of single

double-descents of π;
• fdesp(π) := #{i ∈ [m] : πi−1 > πi = πi+1 and πℓ 6= πi for all ℓ ∈ [i− 1]}, the num-

ber of free descent-plateaus of π;
• ascpp(π) := #{i ∈ [m] : πi−1 < πi = πi+1 or πi−1 < πi > πi+1}, the number of

ascent-plateaus and peaks.
• mdup(π) := #{i ∈ [m] : i is a multiple descent or a unmovable plateau}.
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For example, if π = 15565333124411, then dasc(π) = 2, sddes(π) = 0, fdesp(π) = 1,
ascpp(π) = 3 and mdup(π) = 6.

Now we are ready to state our first expansion formula for Sm(x, y, z).
Theorem 1.2. For any m ∈ Pn with m1 +m2 + · · ·mn = m. The polynomial Sm(x, y, z)
is partial γ-positive and has the expansion

(1.2) Sm(x, y, z) =
m−n∑
i=0

zi
⌊m+1−i

2
⌋∑

j=1

γ̃m,i,j(xy)
j(x+ y)m+1−i−2j,

where
(1.3) γ̃m,i,j = #{π ∈ Qm : sddes(π) = fdesp(π) = 0,mdup(π) = i, ascpp(π) = j}.

As will be seen in next section, Theorem 1.2 recovers two special cases for Stirling per-
mutations due to Ma–Ma–Yeh (see Theorems 13 and 19 in [35]) and confirms their partial
γ-positivity conjecture concerning the Jacobi–Stirling permutations (see Conjecture 2.1).
The combinatorial proof of Theorem 1.2 uses Chen’s context-free grammars and a group
action on Stirling multipermutations that generalizes the original Foata–Strehl group ac-
tion [21] on permutations.

For a multipermutation π = π1 · · · πm ∈ Sm, an index i ∈ [m] is an excedance (resp. a
drop, a fixed point) of π if πi > σi (resp. πi < σi, πi = σi), where the word σ1σ2 · · · σm is
the nondecreasing rearrangement of π. For example, the multipermutation 213212, whose
nondecreasing rearrangement is 112223, has two fixed points (indices 2 and 4), two ex-
cedances (indices 1 and 3) and two drops (indices 5 and 6). Excedances, drops and fixed
points can be viewed as the cycle analog of descents, ascents and plateaux, respectively.
A multipermutation in Sm is called a Smirnov permutation (resp. a derangement) if it has
no plateaux (resp. fixed points). Using some formulas for the dimension of the homol-
ogy of the Rees product of posets, Linusson, Shareshian and Wachs [33, Section 5] (see
also [4, Theorem 2.25]) proved two combinatorial expansions for the γ-positivity of the
descent polynomials on Smirnov permutations and the excedance polynomials on derange-
ments. Our next goal is to put their results in the context of partial γ-positivity. We
still need to introduce some particular multipermutation statistics before we can state our
results.
Definition 1.3. Let π = π1π2 · · · πm ∈ Sm be a multipermutation. We can write π in
the compact form π̂c1

1 π̂c2
2 · · · π̂ck

k such that |π| := π̂1π̂2 · · · π̂k is a Smirnov permutation. For
instance, if π = 32122322111, then its compact form is 3212232213 and |π| = 3212321.
An index i ∈ [k] is a compact double-descent (resp. compact double-ascent) of π if i is
a double-descent (resp. double-ascent) of |π|. A compact double-descent (resp. compact
double-ascent) i of π is said to be unmovable if π̂l = π̂i, where l is the greatest (resp. small-
est) index such that 1 ≤ l < i (resp. i < l ≤ k) and π̂l−1 < π̂i (resp. π̂l+1 < π̂i) with
the convention π̂0 = π̂k+1 = −∞; otherwise, index i is said to be movable. Continuing
with the running example, the indices 2, 6 and 7 are compact double-descents and in-
dex 4 is a compact double-ascent, while only indices 4 and 6 are unmovable. Denote by
mdd(π)/mda(π) (resp. udd(π)/uda(π)) the number of movable (resp. unmovable) compact
double-descents/double-ascents of π.
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The following result generalizes the combinatorial expansion for the γ-positivity of the
descent polynomials on Smirnov permutations proved in [33].
Theorem 1.4. For any m ∈ Pn with m1 +m2 + · · ·mn = m, let

Am(x, y, z) =
∑
π∈Sm

xasc(π)ydes(π)zplat(π).

The polynomial Am(x, y, z) is partial γ-positive and has the expansion

Am(x, y, z) =
m−n∑
i=0

zi
⌊m+1−i

2
⌋∑

j=1

γm,i,j(xy)
j(x+ y)m+1−i−2j,

where
(1.4) γm,i,j = #{π ∈ Sm : mdd(π) = 0, plat(π) = i, des(π) = j}.

This theorem will be proved via introducing another generalization of the Foata–Strehl
action on words (or permutations of a multiset). It turns out that our action also works for
Stirling permutations, which results in a new partial γ-positivity expansion for Sm(x, y, z).
Moreover, a restricted version of this action on words together with Foata’s first funda-
mental transformation [34, Chapter 10.5] on words enable us to prove a partial γ-positivity
expansion of
(1.5) Em(x, y, z) :=

∑
π∈Sm

xexc(π)ydrop(π)zfix(π),

where exc(π) (resp. drop(π), fix(π)) denotes the number of excedances (resp. drops, fixed
points) of π. To state our expansion, we need to introduce some necessary statistics on
multipermutations.
Definition 1.5. Let π = π1π2 · · · πm ∈ Sm be a multipermutation. An index i ∈ [m] is a
record of π if πi ≥ πj for all 1 ≤ j ≤ i− 1. Suppose that |π| = π̂1π̂2 · · · π̂k is the associated
Smirnov permutation. An index i (2 ≤ i ≤ k) is called a valid double-descent (resp. valid
double-ascent) of π if the following three conditions hold (with the convention π̂k+1 = ∞):

• i is not a record of |π|;
• π̂i−1 > π̂i > π̂i+1 (resp. π̂i−1 < π̂i < π̂i+1);
• π̂i 6= π̂l, where l is the smallest (resp. greatest) index such that i < l ≤ k (resp. 2 ≤
l < i) and π̂l+1 > π̂i (resp. π̂l−1 > π̂i).

An index i (2 ≤ i ≤ k) satisfies only the first two conditions above is called an invalid
double-descent (resp. invalid double-ascent) of π. Denote by vdd(π)/vda(π) the number of
valid double-descents/double-ascents of π. An index i ∈ [m] is called a horizontal fixed
point of π if

• i is a consecutive record, i.e., both i and i+1 are records (with the convention that
m+ 1 is always a record);

• or i is a plateau rather than a record.
Let hfix(π) be the number of horizontal fixed points of π. For example, if π = 223212322134,
then |π| = 2321232134 and so vdd(π) = 1 (index 7), while hfix(π) = 5 (indices 1, 2, 8, 11
and 12). Note that hfix(π) ≥ plat(π) + 1 for any π ∈ Sm.
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The following expansion for Em(x, y, z) generalizes the combinatorial expansion for the
γ-positivity of the excedance polynomials on multiset derangements proved in [33].

Theorem 1.6. The polynomial Em(x, y, z) is partial γ-positive and has the expansion

Em(x, y, z) =
m∑
i=0

zi
⌊m−i

2
⌋∑

j=0

γ̄m,i,j(xy)
j(x+ y)m−i−2j,

where

(1.6) γ̄m,i,j = #{π ∈ Sm : vdd(π) = 0, hfix(π) = i, des(π) = j + 1}.

The rest of this paper is organized as follows. In Section 2, we prove Ma–Ma–Yeh’s partial
γ-positivity conjecture for Jacobi–Stirling permutations from Theorem 1.2. In Section 3,
we provide a proof of Theorem 1.2 by using the context-free grammars and a generalization
of the Foata–Strehl action on Stirling permutations. In Section 4, an analytic approach
to the partial γ-positivity of Sm(x, y, z) is studied by using the stable theory of multivari-
ate polynomials developed by Borcea and Brändén. As a result, the descent polynomials
over Stirling permutations with fixed number of plateaux are shown to be real-rooted.
Theorems 1.4 and 1.6 are proved respectively in Sections 5 and 6 via introducing a word
version of the Foata–Strehl group action on permutations. Finally, we conclude this paper
with further remarks about Foata–Strehl group actions and open problems on γ-positive
polynomials arising from enumerative combinatorics or geometry.

2. Jacobi–Stirling permutations

In this section, we show how Theorem 1.2 implies Ma–Ma–Yeh’s partial γ-positivity
conjecture for Jacobi–Stirling permutations.

The Jacobi-Stirling numbers JS(n, k; z), as a generalization of the Stirling number S(n, k),
were introduced in the study of a problem involving the spectral theory of powers of the
classical second-order Jacobi differential expression (see [3]). Write the Jacobi–Stirling
polynomial JS(n + k, k; z) as pn,0(k) + pn,1(k)z + · · · + pn,n(k)z

n. Generalizing the above
study for S(n+k, k), Gessel, Lin and Zeng [24] investigated the diagonal generating function∑

k≥0

pn,i(k)t
k =

An,i(t)

(1− t)3n+1−i

and showed that An,i(t) is the descent polynomial over the Jacobi-Stirling permutations
JSPn,i defined in the same flavor as the Stirling permutations. Introduce the multiset

Mn := {1, 1, 1̄, 2, 2, 2̄, . . . , n, n, n̄},

where the elements are ordered by

1̄ < 1 < 2̄ < 2 < · · · < n̄ < n.

Let [n̄] := {1̄, 2̄, . . . , n̄}. For any subset S ⊆ [n̄], we set Mn,S = Mn \ S. A permutation
of Mn,S is a Jacobi-Stirling permutation if for each i ∈ [n], all entries between the two
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occurrences of i are larger than i. We denote by JSPn,S the set of all Jacobi-Stirling
permutations of Mn,S and set

JSPn,i =
⋃

S⊆[n̄]
|S|=i

JSPn,S.

Note that JSPn,n = Qn.
For any n ≥ 1 and 0 ≤ i ≤ n, let us consider the trivariate extension of An,i(y):

JSPn,i(x, y, z) :=
∑

π∈JSPn,i

xasc(π)ydes(π)zplat(π).

Ma et al. [35] proved that JSPn,0(x, y, z) and JSPn,0(x, y, z) are all partial γ-positive and
posed the conjecture that this phenomenon holds for all JSPn,i(x, y, z).

Conjecture 2.1 (Ma, Ma and Yeh [35]). For any n ≥ 1 and 0 ≤ i ≤ n, the polynomial
JSPn,i(x, y, z) is partial γ-positive.

Proof. To see that Theorem 1.2 implies Conjecture 2.1, for any S ⊆ [n] with |S| = i, define
m(S) = (m1, . . . ,m2n−i) where

mℓ =

{
2, if ℓ = p+ |{a ∈ [n] \ S : a ≤ p}| for some 1 ≤ p ≤ n;

1, otherwise.

For instance, if S = {1, 2, 5, 7} ⊆ [7], then m(S) = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2). Let

JSPn,S(x, y, z) :=
∑

π∈JSPn,S

xasc(π)ydes(π)zplat(π).

It is routine to check that JSPn,S(x, y, z) = Sm(x, y, z) with m = m(S). Therefore, by
Theorem 1.2, JSPn,S(x, y, z) is partial γ-positive, namely,

JSPn,S(x, y, z) =
3n−i−1∑
k=0

zk
⌊ 3n−i+1−k

2
⌋∑

j=1

am,k,j(xy)
j(x+ y)3n−i+1−k−2j.

Conjecture 2.1 then follows from JSPn,i(x, y, z) =
∑

S∈[n]
|S|=i

JSPn,S(x, y, z). □

Remark 2.2. By the above discussion, any interpretation for the γ-coefficients γ̃m,i,j of
Sm(x, y, z) also interprets am(S),k,j, the γ-coefficients of JSPn,S(x, y, z). Actually, the com-
binatorial interpretation for γ̃m,i,j in Theorem 1.2 specializes to the interpretations for the
γ-coefficients of JSPn,0(x, y, z) and JSPn,n(x, y, z) found in [35, Theorems 13 and 19], which
were proved by discussions based on the corresponding recurrences. Their approach seems
hard to get our interpretation of γ̃m,i,j in Theorem 1.2.

Note that a second interpretation for γ̃m,i,j is provided in Corollary 5.2.
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3. Proof of Theorem 1.2

3.1. Context-free grammars and an equidistribution. For a set V = {x, y, z, . . .}
of commutative variables, a context-free grammar G is a set of substitution rules that
replace a variable in V by a Laurent polynomial of variables in V . The formal derivative
D associated with a context-free grammar G (introduced by Chen in [14]) is defined by
D(x) = G(x) for any x ∈ V and satisfies the following relations:

D(u+ v) = D(u) +D(v),

D(uv) = D(u)v + uD(v),

where u and v are two Laurent polynomials of variables in V . The context-free grammars
have been found useful in studying various combinatorial structures [14–18,35,36], including
permutations, increasing trees, labeled rooted trees and set partitions. For example, if
V = {x, y} and G = {x → xy, y → xy}, then D(x) = xy, D2(x) = xy(x + y) and
D3(x) = D(xy)(x+ y) +D(x+ y)xy = x3y+4x2y2 + xy3. This is the grammar introduced
by Dumont [18] to generate the bivariate Eulerian polynomials Dn(x) = An(x, y).

Let π = π1π2 · · · πm ∈ Qm, where m =
∑n

i=1 mi. A plateau i of π is called a first plateaux
if πj 6= πi for all 1 ≤ j < i. Let fplat(π) be the number of first plateau of π. Denote by
sdes(π) (resp. mdes(π)) the number of single (resp. multiple) descents of π. We will apply
the context-free grammars to prove the following equidistribution.

Lemma 3.1. For any m ∈ Pn with m1 +m2 + · · ·+mn = m, the following two triplets of
statistics are equidistributed on the Stirling permutations Qm:

(des, plat, asc) and (fplat+ sdes,mdup, asc).

Proof. Note that i is a first plateau if and only if i is either a free descent-plateau or
an ascent-plateau. In other words, a plateau is unmovable if and only if it is not a first
plateaux. Thus, plat(π)− fplat(π) = uplat(π), the number of unmovable plateau of π. We
aim to show that the quintuplets

(3.1) (sdes,mdes, fplat, uplat, asc) and (sdes, fplat,mdes, uplat, asc)

are equidistributed on Qm, from which the lemma follows.
For a Stirling permutation π ∈ Qm, we first introduce a grammatical labeling of π as

follows:
(L1) If i is a single descent, then put a superscript label x right after πi;
(L2) If i is a multiple descent, then put a superscript label x̃ right after πi;
(L3) If i is a first plateau, then put a superscript label ỹ right after πi;
(L4) If i is a unmovable plateau, then put a superscript label y right after πi;
(L5) If i is an ascent, then put a superscript label z right after πi.

Recall that we always set π0 = πm+1 = 0. For example, if π = 15565333124411, then the
labeling of π is

0z1z5ỹ5z6x5x̃3ỹ3y3x̃1z2z4ỹ4x̃1y1x̃0.

It is clear that the weight xsdes(π)x̃mdes(π)ỹfplat(π)yuplat(π)zasc(π) is the product of all the su-
perscripts in the labelings of π. Let V = {x, x̃, y, ỹ, z}. For integer k ≥ 2, introduce the
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context-free grammar
Gk = {x → x̃ỹyk−2z, x̃ → x̃ỹyk−2z, y → x̃ỹyk−2z, ỹ → x̃ỹyk−2z, z → x̃ỹyk−2z}.

Also, define the context-free grammar
G1 = {x → xz, x̃ → xz, y → xz, ỹ → xz, z → xz}.

For any k ≥ 1, let Dk be the formal derivative associated with the context-free grammar
Gk. We claim that

DmnDmn−1 · · ·Dm1(z) =
∑
π∈Qm

xsdes(π)x̃mdes(π)ỹfplat(π)yuplat(π)zasc(π).

The equidistribution (3.1) then follows from this claim and the fact that the context-free
grammars Gk are symmetric in x̃ and ỹ for all k ≥ 1.

It remains to show the claim. We proceed by induction on n. The statement is obvi-
ously true for the initial case n = 0, as Q0 = {0z0}. Suppose that we have all labeled
permutations in Qm′ , where m′ = (m1,m2, . . . ,mn−1). Note that every permutation in Qm

can be constructed from a permutation σ ∈ Qm′ by inserting nmn , mn copies of n, to the
position between σi and σi+1 for some nonnegative integer i. The changes of labelings are
illustrated as follows for any v ∈ {x, x̃, y, ỹ, z} (no matter what the label v is):

• If mn ≥ 2, then
· · · σv

i σi+1 · · · 7→ · · · σz
i n

ỹny · · ·nynx̃σi+1 · · · ,

where ny appears (mn − 2) times.
• Otherwise mn = 1, and

· · · σv
i σi+1 · · · 7→ · · · σz

i n
xσi+1 · · · .

In either case, the insertion of nmn corresponds to one substitution rule in Gmn . Since the
action of Dmn on elements of Qm′ generates all elements of Qm, the claim holds. This
completes the proof of the lemma. □

In order to finish the proof of Theorem 1.2, we need a generalization of the Foata–Strehl-
action for Stirling permutations that will be introduced below.

3.2. Generalized Foata–Strehl actions on Stirling permutations. For a Stirling
permutation π ∈ Qm and a value x ∈ [n], suppose that πℓ is the leftmost occurrence of x
in π. We call x a free descent-plateau value (resp. a single double descents value, a double
ascents value) of π if ℓ is a free descent plateau (resp. a single double descents, a double
ascents) of π. Then we introduce the Generalized Foata-Strehl action (GFS-action for short)
φ̃x as follows:

• If x is a free descent-plateau value or a single double descents value of π, then φ̃x(π)
is obtained from π by moving πℓ to the right of the letter πk, where k = max{a :
0 ≤ a ≤ ℓ− 2, πa < x};

• If x is a double ascents value of π, then φ̃x(π) is obtained from π by moving πℓ to
the left of the letter πk, where k = min{a : ℓ+ 2 ≤ a ≤ m+ 1, πa ≤ x};

• If x is not in the above two cases, then let φ̃x(π) = π.
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Figure 1. GFS-actions on Stirling permutation 15565333124411

The GFS-action has a nice visualization as depicted in Fig. 1. For example, if π =
15565333124411, then φ̃1(π) = 55653331124411, φ̃3(π) = 13556533124411 and φ̃2(π) =
15565333144211. When m1 = m2 = · · · = mn = 1, the GFS-action becomes the version of
the Modified Foata-Strehl action introduced in [29].

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.1, we have

Sm(x, y, z) =
∑
π∈Qm

xasc(π)yfplat(π)+sdes(π)zmdup(π).

Let us define the set Qm,i = {π ∈ Qm : mdup(π) = i}. Then Theorem 1.2 is equivalent to

(3.2)
∑

π∈Qm,i

xasc(π)yfplat(π)+sdes(π) =
∑

π∈Q̃m,i

(xy)ascpp(π)(x+ y)m+1−i−2×ascpp(π),

where Q̃m,i := {π ∈ Qm,i : sddes(π) = fdesp(π) = 0}.
Clearly, the GFS-actions φ̃x’s are involutions and commute. Thus, for any S ⊆ [n]

we can define the function φ̃S : Qm → Qm by φ̃S =
∏

x∈S φ̃x, where the product is the
functional compositions. For instance, continuing with the example in Fig. 1, we have
φ̃{1,3}(π) = 35565331124411. Hence the group Zn

2 acts on Qm via the function φ̃S. Since
the statistic “mdup” is invariant under this group action, it divides Qm,i into some disjoint
orbits. For each π ∈ Qm,i, let Orb(π) = {g(π) : g ∈ Zn

2} be the orbit of π under the
GFS-action. Note that x is a free descent-plateau value or a single double descents value
of π if and only if x is a double ascents value of φ̃x(π). Thus, there exists a unique Stirling
permutation π̃ in Orb(π) such that sddes(π̃) = fdesp(π̃) = 0, that is, Q̃m,i

⋂
Orb(π) = {π̃}.

Therefore, we have∑
σ∈Orb(π)

xasc(σ)yfplat(σ)+sdes(σ) = xasc(π̃)−dasc(π̃)yfplat(π̃)+sdes(π̃)(x+ y)dasc(π̃)

= (xy)ascpp(π̃)(x+ y)m+1−i−2×ascpp(π̃),

where the second equality follows from the following relationships

(3.3) asc(π̃)− dasc(π̃) = fplat(π̃) + sdes(π̃) = ascpp(π̃)



MULTIPERMUTATIONS AND PARTIAL γ-POSITIVITY 11

and
(3.4) dasc(π̃) = m+ 1− i− 2× ascpp(π̃).

Summing over all orbits of Qm,i under the GFS-action then gives (3.2).
It remains to show the above relationships. Since π̃ has neither free descent-plateau

nor single double descents, every first plateau must be an ascent-plateau and every single
descent is a peak. Thus, we have fplat(π̃) + sdes(π̃) = ascpp(π̃). As each ascent is followed
immediately by an ascent, a plateau or a descent, we have asc(π̃) = dasc(π̃) + ascpp(π̃),
which proves (3.3). Clearly, we have asc(π̃) + plat(π̃) + des(π̃) = m + 1 and mdup(π̃) +
fplat(π̃) + sdes(π̃) = plat(π̃) + des(π̃). It then follows that mdup(π̃) + asc(π̃) + fplat(π̃) +
sdes(π̃) = m+ 1 and so by (3.3),

dasc(π̃) = asc(π̃)− ascpp(π̃) = m+ 1−mdup(π̃)− 2× ascpp(π̃),

which is relationship (3.4). This completes the proof of the theorem. □

4. Stability

In this section, we study the analytic properties of the trivariate polynomial Sm(x, y, z).
From the involution

π1π2 · · · πm 7→ πmπm−1 · · · π1,

we know that Sm(x, y, z) is symmetric in x and y. Hence, the partial γ-positivity of
Sm(x, y, z) is equivalent to the γ-positivity of the following refined descent polynomials

Sm,i(x) =
∑
π

xdes(π),

where the sum runs over all Stirling permutations π ∈ Qm with plat(π) = i. It is known
(see [10, Remark 7.3.1]) that the real-rootedness of a polynomial with symmetric coefficients
implies the γ-positivity of such polynomial. This motivates us to study an alternative
approach to the partial γ-positivity of Sm(x, y, z).

Let us recall the stability of multivariate polynomials, which has been developed enor-
mously by Borcea and Brändén [5,6]. A polynomial f ∈ R[x1, . . . , xn] is said to be stable if
either f(x1, . . . , xn) 6= 0 whenever Im(xi) > 0 for all i or f is identically zero. Note that a
univariate real polynomial is stable if and only if it has only real roots. Several multivariate
Eulerian polynomials have been shown to be stable, see [8, 11, 16, 43, 45].

Our main result of this section is stated as follows.

Theorem 4.1. Let p(x, y, z) be a trivariate homogeneous polynomial with nonnegative
coefficients. If p(x, y, z) is stable and symmetric in x and y, then p(x, y, z) is partial
γ-positive.

In order to prove Theorem 4.1, we shall introduce some basic results about stability-
preserving linear operators.

Lemma 4.2 (See [44, Lemma 2.4]). Given i, j ∈ [n], the following operations preserve
stability of f ∈ R[x1, . . . , xn]:

(1) Differentiation: f 7→ ∂f/∂xi.
(2) Diagonalization: f 7→ f |xi=xj

.
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(3) Specialization: for a ∈ R, f 7→ f |xi=a.

Now it is time for us to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose that p(x, y, z) =
∑d

i=0 si(x, y)z
i. We first prove that for

each 0 ≤ k ≤ d, the polynomial sk(x, y) is stable. By taking the k-th order partial derivative
with respect to z of the real stable polynomial p(x, y, z) it follows from Lemma 4.2 that∑d

i=k(i)ksi(x, y)z
i−k is stable, where (i)k = i(i−1) · · · (i−k+1). Note that if z is in the upper

half plane then so is −1/z. Hence, we obtain the stability of
∑d

i=k(−1)i−k(i)ksi(x, y)z
d−i.

Similarly, by taking the (d − k)-th order partial derivative with respect to z, we get the
stability of sk(x, y).

We next prove that sk(x, y) is homogeneous γ-positive. By Lemma 4.2, we get that
sk(x, 1) is real-rooted. Since sk(x, y) is symmetric in x and y, we know that the coefficients
of sk(x, 1) are symmetric. Hence, the polynomial sk(x, 1) is γ-positive. Since sk(x, y) is
homogeneous in x and y, we obtain the homogeneous γ-positivity of sk(x, y). This completes
the proof. □

We proceed to use Theorem 4.1 to prove the partial γ-positivity of Sm(x, y, z). In order
to do this, it suffices to show that Sm(x, y, z) is stable. For an element π ∈ Qm, let
D(π) and A(π) be the set of descents and ascents of π, respectively. If κ = maxi mi and
1 ≤ j < κ, define Pj(π) to be the set of indices i such that πi = πi+1 where π1 · · · πi−1

contains j − 1 instances of πi. Haglund and Visontai [26, Theorem 3.5] showed that the
multivariate polynomial ∑

π∈Qm

∏
i∈D(π)

xπi

∏
i∈A(π)

yπi

κ−1∏
j=1

( ∏
i∈Pj(π)

zj,πi

)
is stable. By diagonalizing the variables xπi

, yπi
and zj,πi

to x, y and z respectively, it
follows from Lemma 4.2 that the polynomial Sm(x, y, z) is stable. As an application of this
result we get the real-rootedness of Sm,i(x).

Corollary 4.3. For any m ∈ Pn with m1 +m2 + · · ·mn = m and any 0 ≤ i ≤ m− 1, the
polynomial Sm,i(x) has only real roots.

5. Foata–Strehl actions on words and proof of Theorem 1.4

In this section, we introduce another generalization of Foata–Strehl actions on words and
give a proof of Theorem 1.4.

Let π = π1π2 · · · πm ∈ Sm be a multipermutation whose compact form is π̂c1
1 π̂c2

2 · · · π̂ck
k .

Thus, its associated Smirnov permutation is |π| = π̂1π̂2 · · · π̂k. For x ∈ [k], we introduce
the word version of Foata–Strehl action (abbreviated as WFS-action) φx as follows:

• If x is a double-descent of |π|, then φx(π) is obtained from π by moving π̂cx
x to the

right of the letter πℓ, where ℓ = max{a : 0 ≤ a ≤
∑x−1

i=1 ci and πa < π̂x};
• If x is a double-ascent of |π|, then φx(π) is obtained from π by moving π̂cx

x to the
left of the letter πℓ, where ℓ = min{a :

∑x
i=1 ci < a ≤ k and πa < π̂x};

• If x is neither a double-descent nor a double-ascent, then let φx(π) = π.
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Figure 2. Modified WFS-actions on 12413534123524264

For instance, if π = 12413534123524264, then |π| = 141353125464 and

φ8(π) = 12413534152426423, φ12(π) = 12413534123452426.

Proof of Theorem 1.4. Let Sm,i := {π ∈ Sm : plat(π) = i}. For each π ∈ Sm,i, if its
associated Smirnov permutation |π| has length k, then i+ k = m. For each x ∈ [k], let us
introduce the modified WFS-action φ′

x by

φ′
x(π) =

{
φx(π), if x is a movable double-descent/double-ascent of π;
π, otherwise.

See Fig. 2 for a nice visualization of the modified WFS-actions on π = 12413534123524264.
Clearly, the action φ′

x preserves the number of plateau, thus φ′
x(π) ∈ Sm,i.

If x is a movable double-descent/double-ascent of |π|, then the pack of letters π̂cx
x is called

a (movable) double-descent/double-ascent pack of π. We call two elements in Sm,i equivalent
if one can be obtained from the other by a sequence of actions of the form π 7→ φ′

x(π). This
defines an equivalence relation on Sm,i, since a pack π̂cx

x is a double-descent pack of π if
and only if it is a double-ascent pack of φ′

x(π). Moreover, the equivalence class containing
π, denoted Orb(π), has a unique permutation π̃ such that mdd(π̃) = 0, the one with least
descents. Therefore,

(5.1)
∑

σ∈Orb(π)

xasc(σ)ydes(σ) = (xy)des(π̃)(x+ y)mda(π̃) = (xy)des(π̃)(x+ y)m+1−i−2×des(π̃),

where the second equality follows from the relationship

(5.2) mda(π̃) = m+ 1− i− 2× des(π̃).

It suffices to prove the above relationship for π̃ being a Smirnov word. For such a π̃,
Eq. (5.2) is a consequence of the following simple facts:

mdd(π̃) +mda(π̃) + udd(π̃) + uda(π̃) + peak(π̃) + val(π̃) = m,

udd(π̃) + peak(π̃) = uda(π̃) + val(π̃) + 1 = des(π̃) and mdd(π̃) = 0,

where peak(π̃) and val(π̃) denote respectively the number of peaks and valleys of π̃.
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Let S̃m,i := {π̃ ∈ Sm,i : mdd(π̃) = 0}. Using (5.1) and summing over all equivalence
classes of Sm,i yields∑

π∈Sm,i

xasc(π)ydes(π) =
∑

π̃∈S̃m,i

(xy)des(π̃)(x+ y)m+1−i−2×des(π̃),

which is equivalent to (1.4). □
Lemma 5.1. The set Qm is invariant under the modified WFS-actions.

Proof. For any π ∈ Qm, either φ′
x(π) = π or φ′

x(π) is obtained from π by moving copies of
letters across some letters not smaller than them, φ′

x(π) ∈ Qm. □
Lemma 5.1 and Eq. (5.1) lead to a second interpretation for the γ-coefficients γ̃m,i,j,

which is new even when m = {1, 1, 2, 2, . . . , n, n}.

Corollary 5.2. The γ-coefficients γ̃m,i,j defined in 1.2 has another interpretation
(5.3) γ̃m,i,j = #{π ∈ Qm : mdd(π) = 0, plat(π) = i, des(π) = j}.

Let π = π1π2 · · · πm ∈ Sm be a multipermutation with m = (m1,m2, . . . ,mn) ∈ Pn.
Define the complement πc of π by

πc = (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πm).

Let Wasc(π) be the set of indices i ∈ [m] such that πi ≤ πi+1 with the convention πm+1 =
+∞. For Ω ⊆ Z, we denote by Stab(Ω) the set of all subsets of Ω which do not contain
two consecutive integers. For each j ≥ 1, let

Wm,j := {π ∈ Sm : Wasc(π) ∈ Stab([n]) and |Wasc(π)| = j}.
The following alternative description of the γ-coefficients γm,0,j proved in [33, Section 5]

can be deduced from Theorem 1.4.

Theorem 5.3 (Linusson, Shareshian and Wachs). For any m ∈ Pn and j ≥ 1,
γm,0,j = |Wm,j|.

We will also need the following multiplicity changing bijection θ constructed by Han [27,
Section 4].

Lemma 5.4. Let m = (m1,m2, · · · ,mn) ∈ Pn and m′ = (m′
1,m

′
2, · · · ,m′

n) a rearrangement
of m. There exists a bijection θ : Sm → Sm′ such that for each π ∈ Sm,

Wasc(π) = Wasc(θ(π)).

Proof of Theorem 5.3. Let Wdes(π) be the set of indices i ∈ [m] such that πi ≥ πi+1

with the convention πm+1 = −∞. For each j ≥ 1, set
W ′

m,j := {π ∈ Sm : Wdes(π) ∈ Stab([n]) and |Wdes(π)| = j}
and

Γm,j := {π ∈ Sm : mdd(π) = plat(π) = 0, des(π) = j}.
A WFS-action π 7→ φx(π) is called an unmovable action on π if x is an unmovable double
descent of π. Applying all possible unmovable actions to an element π ∈ Γm,j results in a
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permutation f(π) ∈ W ′
m,j. The mapping π 7→ f(π) is a bijection between Γm,j and W ′

m,j.
On the other hand, the mapping π 7→ πc sets up an one-to-one correspondence between
W ′

m,j and Wm,j, where m = (mn,mn−1, . . . ,m1). By Lemma 5.4, θ is a bijection between
Wm,j and Wm,j. Thus, |Γm,j| = |Wm,j|. By Theorem 1.4, γm,0,j = |Γm,j| and the desired
result follows. □

6. Restricted Foata–Strehl action and proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6. We will apply the so-called Foata’s
first fundamental transformation π 7→ π̆ on Sm (see [34, pp. 197-199]). It is convenience
to recall this transformation by means of one example. Consider the multipermutation

π = 3112364222665175.

Its increasing factorization (see [34, Lemma 10.2.1]) is
(3112, 3, 64222, 6, 651, 75),

where each component is a dominated word, i.e., a maximal word whose first letter is strictly
greater than the others. Then form the two rows of words

∆(π) =

[
1 1 2 3 3 4 2 2 2 6 6 5 1 6 5 7
3 1 1 2 3 6 4 2 2 2 6 6 5 1 7 5

]
,

where the bottom row is π and the top row is the concatenation of all shifted components
of π. Here a shifted component is obtained from a component by shifting its first letter to
the end. For instance, the shifted component of 3112 is 1123. Finally, reshuffling all the
columns of ∆(π) so that the top row is in increasing order[

1 1 1 2 2 2 2 3 3 4 5 5 6 6 6 7
3 1 5 1 4 2 2 2 3 6 6 7 2 6 1 5

]
.

The word π̆ = 3151422236672615 is then defined to be the bottom row above.
The following lemma is a direct consequence of Foata’s first fundamental transformation

π 7→ π̆ on Sm.

Lemma 6.1. The mapping π 7→ π̆ is a bijection of Sm onto itself that transforms the pair
(hfix, des− 1) to (fix, exc).

Proof. The fact that π 7→ π̆ is a bijection of Sm onto itself that transforms des to exc was
proved in [34, Theorem 10.5.2]. It is evident from the construction above that hfix(π) =
fix(π̆) since i is a horizontal fixed point of w if and only if the ith column of ∆(π) is

(
πi

πi

)
,

which corresponds to a fixed point of π̆. □

It follows from Lemma 6.1 and the definition of Em(x, y, z) in 1.5 that

(6.1) Em(x, y, z) =
∑
π∈Sm

xdes(π)−1ym+1−des(π)−hfix(π)zhfix(π)

since fix(π)+exc(π)+drop(π) = m for each π ∈ Sm. Now we proceed to prove Theorem 1.6
via introducing a restricted version of the Foata–Strehl action on words.
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Figure 3. Restricted WFS-actions on 426432353134526386792 (all record
values are circled)

Let π ∈ Sm with |π| = π̂1π̂2 · · · π̂k. For any x ∈ [k], let us introduce the complement φ̄x

of the WFS-action φx by
φ̄x(π) = (φx(π

c))c.

Define the restricted WFS-action φ̄′
x by

φ̄′
x(π) =

{
φ̄x(π), if x is a valid double-descent/double-ascent of π;
π, otherwise.

See Fig. 2 for a visualization of the restricted WFS-actions on 426432353134526386792.

Proof of Theorem 1.6. It is evident from the definition of φ̄′
x that it preserves the num-

ber of horizontal fixed points. Let S′
m,i := {π ∈ Sm : hfix(π) = i}. Let π ∈ S′

m,i with
compact form π̂c1

1 π̂c2
2 · · · π̂ck

k . If x is a valid double-descent/double-ascent of |π|, then the
pack of letters π̂cx

x is called a (valid) double-descent/double-ascent pack of π. We call two
elements in S′

m,i equivalent if one can be obtained from the other by a sequence of actions
of the form π 7→ φ̄′

x(π). This defines an equivalence relation on Sm,i, since a pack π̂cx
x is

a double-descent pack of π if and only if it is a double-ascent pack of φ̄′
x(π). Moreover,

the equivalence class containing π, denoted Orb(π), has a unique permutation π̃ such that
vdd(π̃) = 0, the one with least descents. Therefore,

(6.2)
∑

σ∈Orb(π)

xdes(σ)−1 = xdes(π̃)−1(1 + x)vda(π̃) = xdes(π̃)−1(1 + x)m−i−2(des(π̃)−1),

where the second equality follows from the relationship
(6.3) vda(π̃) = m− i− 2(des(π̃)− 1).

By the increasing factorization of multipermutations, it suffices to prove (6.3) for π̃ being
a dominated word, i.e., a word with only one record. We can further assume that π̃ has no
plateau and m > 1. For such a π̃, Eq. (6.3) reduces to

vda(π̃) = m− 2(des(π̃)− 1).
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This is a consequence of the following simple fact
1 + idd(π̃) + peak(π̃) + ida(π̃) + val(π̃) + vda(π̃) = m,

1 + idd(π̃) + peak(π̃) = ida(π̃) + val(π̃) = des(π̃)− 1,

where idd(π̃)/ida(π̃) is the number of invalid double-descents/double-ascents of π̃ and
peak(π̃) (resp. val(π̃)) is the number of indices 1 ≤ i ≤ m such that π̃i−1 < π̃i > π̃i+1

(resp. π̃i−1 > π̃i < π̃i+1) with the convention that π̃0 = π̃m+1 = +∞.
Let S̃′

m,i := {π̃ ∈ S′
m,i : vdd(π̃) = 0}. Using (6.2) and summing over all equivalence

classes of S′
m,i yields∑

π∈S′
m,i

xdes(π)−1 =
∑

π̃∈S̃′
m,i

xdes(π̃)−1(1 + x)m−i−2(des(π̃)−1).

It then follows that
ym−i

∑
π∈S′

m,i

(xy−1)des(π)−1 = ym−i
∑

π̃∈S̃′
m,i

(xy−1)des(π̃)−1(1 + xy−1)m−i−2(des(π̃)−1)

=
∑

π̃∈S̃′
m,i

(xy)des(π̃)−1(x+ y)m−i−2(des(π̃)−1),

which is equivalent to (1.6) in view of (6.1). □
Let [2, n] := {2, 3, . . . , n}. For j ≥ 0, introduce

Dm,j := {π ∈ Sm : Wasc(π) ∈ Stab([2, n]) and |Wasc(π)| = j}.

Theorem 6.2 (Linusson, Shareshian and Wachs). For any m ∈ Pn and j ≥ 0,
γ̄m,0,j = |Dm,j+1|.

Proof. Let
Γm,j := {π ∈ Sm : vdd(π) = hfix(π) = 0, des(π) = j}.

An action π 7→ φ̄x(π) is called an invalid action on π if x is an invalid double descent of
π. Applying all possible invalid actions to an element π ∈ Γm,j results in a permutation
g(π) ∈ Dm,j. It is routine to check that the mapping π 7→ g(π) is a bijection between Γm,j

and Dm,j. Thus, |Γm,j| = |Dm,j| and so the result follows from Theorem 1.6. □

7. Concluding remarks, open problems

The Foata–Strehl group action on permutations was invented by Foata and Strehl [21]
(see also [39]) to prove combinatorially the homogeneous γ-positivity expansion

An(x, y) =

⌊n+1
2

⌋∑
k=1

γn,k(xy)
k(x+ y)n+1−2k,

where γn,k enumerates the permutations in Sn with k descents and with no double descents.
Since then some generalizations and analogues of this γ-positivity expansion, with or with-
out combinatorial proofs, have been found [9, 22, 29, 30, 32, 38]. The reader is referred to
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Athanasiadis’s survey [4] for the state-of-the-art on this theme. In the following, we discuss
some recent developments and open problems along this line of research.

On the one hand, various interesting applications and extensions of the Foata–Strehl
actions have been found in the literature:

• Brändén [9] successfully applied the Modified Foata–Strehl action (MFS-action for
short) to prove the γ-positivity of the descent polynomials on r-stack sortable per-
mutations. In the same paper, he also extended the MFS-action to linear extensions
of sign-graded posets to give a new proof of the unimodality of the (P, ω)-Eulerian
polynomials of sign-graded posets.

• Postnikov–Reiner–Williams [38] developed the MFS-action to prove the γ-positivity
of the h-polynomials of various families of graph-associahedra.

• Lin and Zeng [32] applied a restricted version of the MFS-action to prove the q-γ-
positivity of the basic Eulerian polynomials.

• Lin and Kim [29] applied the MFS-action to (2413, 4213)-avoiding permutations
and 021-avoiding inversion sequences.

• Athanasiadis [4] generalized the MFS-action to Smirnov words, which was further
generalized to all words in the proof of Theorem 1.4 in Section 5.

• Very recently, Lin–Ma–Ma–Zhou [31] successfully generalized the MFS-action from
increasing trees to weakly increasing trees of a multiset.

On the other hand, several interesting generalizations of the Eulerian polynomials were
proved to have nonnegative γ-coefficients, but to find a combinatorial interpretation of the
corresponding γ-coefficients is widely open. Three representative examples are:

• The symmetric restricted Eulerian polynomials have γ-positivity expansion [37]:

∑
π∈Sn

π1=j,n+1−j

tdes(π) =

⌊(n+1)/2⌋∑
i=1

γ
(n,j)
i ti(1 + t)n+1−2i,

where γ
(n,j)
i are nonnegative integers.

• The double Eulerian polynomials have two-sided γ-positivity expansion [30]:∑
π∈Sn

sdes(π
−1)tdes(π) =

∑
i≥1,j≥0

j+2i≤n+1

an,i,j(st)
i(1 + st)j(s+ t)n+1−j−2i,

where an,i,j are nonnegative integers.
• The k-multiset Eulerian polynomials (for k ≥ 1)

A(k)
n (t) :=

∑
π∈Sm

tdes(π) with m = (k, k, . . . , k) ∈ Pn

are known to be palindromic [13] and real-rooted [41], and thus are γ-positive.
Note that the symmetric restricted Eulerian polynomials are the h-polynomials of the
barycentric subdivision of a boolean complex (see [37]), while the 2-multiset Eulerian poly-
nomials A

(2)
n (t) are proved only recently by Ardila [2] to be the h-polynomial of the biper-

mutahedral fan. It would be interesting to see whether there are geometry meanings for
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the k-multiset Eulerian polynomials A
(k)
n (t) (for k ≥ 3) and for the double Eulerian poly-

nomials. It should be pointed out that an interpretation in terms of some kind of weakly
increasing trees for the γ-coefficients of A(2)

n (t) were found very recently in [31]. It seems
hard to develop group action proofs of the above three γ-positivity generalized Eulerian
polynomials.

In this paper, we prove three instances of partial γ-positivity polynomials that enumerate
classical statistics on multipermutations via developing generalizations of the MFS-action.
No geometry interpretation for these three classes of generalized Eulerian polynomials were
known in general, except for the classical Eulerian polynomials. To end this paper, we
pose a partial γ-positivity conjecture related to enumerative polynomials on quai-Stirling
permutations introduced by Archer, Gregory, Pennington and Slayden [1].

A word W = w1w2 · · ·wn is said to avoid the word (or pattern) P = p1p2 · · · pk (k ≤ n)
if there does not exist i1 < i2 < · · · < ik such that the subword wi1wi2 · · ·wik of W is order
isomorphic to P . In the language of pattern avoidance, a multipermutation is Stirling if
and only if it avoids the pattern 212. Analogously, a multipermutation is quasi-Stirling if
and only if it avoids both the patterns 1212 and 2121. For any m ∈ Pn, let Qm denote the
set of all quasi-Stirling permutations in Sm. The set Qm when m = (2, 2, . . . , 2) was first
considered and enumerated by Archer et al. [1] and further generalized to m = (k, k, . . . , k)
(for k ≥ 1) by Elizalde in [19], where the joint distribution of the three statistics asc, plat
and des over these special quasi-Stirling permutations was also investigated. Note that
Qm ⊆ Qm ⊆ Sm and in view of Theorems 1.4 and 1.2 and Corollary 5.2, we make the
following conjecture basing on empirical evidence.
Conjecture 7.1. For any m ∈ Pn, introduce

Qm(x, y, z) :=
∑
π∈Qm

xasc(π)ydes(π)zplat(π).

Then, Qm(x, y, z) is partial γ-positive.
Lemma 5.1 is equivalent to the assertion that the modified WFS-action φ′

x preserves the
pattern 212. However, this modified WFS-action φ′

x does not preserve the patterns 1212
or 2121; consider for instance the action φ′

1 or φ′
4 on 23123.
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