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Abstract. Recently, Nunge studied Eulerian polynomials on segmented per-
mutations, namely generalized Eulerian polynomials, and further asked whether
their coefficients form unimodal sequences. In this paper, we prove the stability
of the generalized Eulerian polynomials and hence confirm Nunge’s conjecture.
Our proof is based on Brändén’s stable multivariate Eulerian polynomials. By
acting on Brändén’s polynomials with a stability-preserving linear operator, we
get a multivariate refinement of the generalized Eulerian polynomials. To prove
Nunge’s conjecture, we also develop a general approach to obtain generalized
Sturm sequences from bivariate stable polynomials.

Keywords: segmented permutations, generalized Eulerian poynomials, unimodal-
ity, stable polynomials, generalized Sturm sequences.

AMS Subject Classifications: 05A15, 26C10.

1 Introduction
The main objective of this paper is to prove a unimodality conjecture for the
generalized Eulerian polynomials proposed by Nunge. In this paper, we give a
multivariate refinement of the generalized Eulerian polynomials and then prove
their stability, from which Nunge’s conjecture can be confirmed.

Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. Given a per-
mutation π = π1π2 · · · πn ∈ Sn, let

des(π) = |{i ∈ [n− 1] : πi > πi+1}|

denote the descent number of π. The Eulerian number A(n, k) is defined as the
number of permutations with k descents in Sn and the Eulerian polynomial An(t)
is usually defined as the ordinary generating function of A(n, k), namely,

An(t) =
n−1∑
k=0

A(n, k)tk =
∑
π∈Sn

tdes(π).

Eulerian polynomials and Eulerian numbers have been extensively studied over
the years, see [6, 12].
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Corteel and Nunge [5] studied a recoil statistic on partially signed permuta-
tions during their study of the 2-species exclusion processes and Hopf algebras
over segmented compositions, see also [11]. Recently, Nunge [10] gave a corre-
sponding statistic on segmented permutations, namely the descent statistic. A
segmented permutation is a permutation equipped with some separate bars which
can be inserted into the slots between two consecutive letters. Let Pn denote
the set of segmented permutations of [n]. For σ ∈ Pn, a position i is said to
be a descent if σi > σi+1 and there is no bar in the slot between σi and σi+1.
We denote by des(σ) (respectively, seg(σ)) the number of descents (respectively,
bars) of σ. For example, with σ = 2|516|34, we have des(σ) = 1 and seg(σ) = 2.
The generalized Eulerian numbers are defined as follows:

T (n, k) = |{σ ∈ Pn : des(σ) = k}|

and
K(n, i, j) = |{σ ∈ Pn : des(σ) = i, seg(σ) = j}|.

Following Nunge, let

Pn(t) =
n−1∑
k=0

T (n, k)tk =
∑
σ∈Pn

tdes(σ)

and

αn(t, q) =
n−1∑
i=0

n−i−1∑
j=0

K(n, i, j)tiqj =
∑
σ∈Pn

tdes(σ)qseg(σ).

Note that the polynomial αn(t, q) gives back the usual Eulerian polynomials at
q = 0 and the ordered Bell polynomials at t = 0. Namely, αn(t, 0) = An(t) and
αn(0, q) =

∑n−1
r=0 (r + 1)!S(n, r + 1)qr, where S(n, k) are the Stirling numbers of

the second kind.
Nunge’s conjecture is concerned with the unimodality of the rows and columns

of T (n, k) and K(n, i, j). Recall that a sequence of positive integers a0, a1, . . . , an
is said to be unimodal if there exists an index 0 ≤ i ≤ n such that a0 ≤ a1 ≤ · · · ≤
ai−1 ≤ ai ≥ ai+1 ≥ · · · ≥ an. It is well known that, for a sequence of positive
numbers, its log-concavity implies unimodality, see [14]. Nunge proposed the
following conjecture.

Conjecture 1.1. For any positive integer n, the integer sequences {T (n, k)}n−1
k=0,

{K(n, i, j)}n−j−1
i=0 and {K(n, i, j)}n−i−1

j=0 are unimodal sequences.

By the Newton’s inequality (see [8, p. 104]), if a polynomial with nonnegative
coefficients has only real zeros, then the sequence of its coefficients is log-concave
and hence unimodal. Given a positive integer n, for any 0 ≤ i, j ≤ n− 1, let

Kn,j(x) =

n−1−j∑
i=0

K(n, i, j)xi and Ln,i(x) =
n−1−i∑
j=0

K(n, i, j)xj.
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In this paper, we obtain the real-rootedness of Pn(t), Kn,j(x), and Ln,i(x) from
which the log-concavity and unimodality of their coefficients can be deduced and
hence give an affirmative answer to Conjecture 1.1.

Theorem 1.2. For any integers n ≥ 1 and 0 ≤ i, j ≤ n − 1, the polynomials
Pn(t), Kn,j(x) and Ln,i(x) have only real zeros.

Our approach to prove Theorem 1.2 is to employ a multivariate stable polyno-
mial, which generalizes both Pn(t) and αn(t, q). The theory of stable polynomials
has turned out to play a key role in various combinatorial problems, see [2, 16]
and references therein. In this paper, we introduce a new multivariate polynomial
αn(x,y, z,w) and show that it can be constructed by acting on Brändén’s mul-
tivariate stable Eulerian polynomial with a linear operator. We then prove this
operator preserves stability and hence the polynomial αn(x,y, z,w) is stable.

Our next step is to deduce the real-rootedness of Pn(t), Kn,j(x), and Ln,i(x)
from the stability of αn(x,y, z,w). We note that αn(t, q) can be reduced from
αn(x,y, z,w) and Pn(t) = αn(t, 1). Since the involved operators preserve real
stability, we obtain the stability of αn(t, q) and Pn(t). Hence, the univariate stable
polynomial Pn(t) has only real zeros. To prove the real-rootedness of Kn,j(x) and
Ln,i(x), we develop a general way (Theorem 2.3) to obtain generalized Sturm
sequences (defined in Section 2) from bivariate stable polynomials.

The remainder of this paper is organized as follows. In Section 2, we recall
some definitions and results on stable polynomials, including certain linear opera-
tors which preserve real stability. We also give a new result (Theorem 2.3) which
relates bivariate stable polynomials to generalized Sturm sequences. Section 3 is
dedicated to our proof of Theorem 1.2. Our proof is based on the stability of
αn(x,y, z,w). We also relate αn(t, q) and Pn(t) to the classical Eulerian poly-
nomial An(t) and then prove the stability of αn(t, q) in an alternative way.

2 Preliminaries
In this section, we shall give an overview of stable polynomials. After recalling the
definition of stable polynomials, we list some stability-preserving linear operators
which will be used in the paper. We also present Theorem 2.3, a general approach
to obtain generalized Sturm sequences from bivariate stable polynomials. Our
proof of Theorem 2.3 is similar to that of Newton’s inequality and based on the
Hermite–Biehler Theorem.

Now let us recall the notion of real stability, which generalizes the notion of
real-rootedness from univariate real polynomials to multivariate real polynomials.
For a positive integer n, let x be the n-tuple (x1, . . . , xn). Let H+ = {z ∈ C :
Im(z) > 0} denote the open upper complex half-plane. A polynomial f ∈ R[x] is
said to be (real) stable if f(x) ̸= 0 for any x ∈ Hn

+ or f is identically zero. Note
that a univariate polynomial f(x) ∈ R[x] is stable if and only if it has real zeros.
A polynomial f(x) is said to be multiaffine if the power of each indeterminate
xi is at most one. For a set P of polynomials, let PMA be the set of multiaffine
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polynomials in P . Borcea and Brändén [1] gave a complete characterization of the
linear operators which preserve multivariate stable polynomials. In this paper,
we shall use a multiaffine version of Borcea and Brändén’s characterization, which
shall play a key role in this paper to prove the stability of polynomials.

Lemma 2.1 ([16, Theorem 3.5]). Let T : R[x]MA → R[x] be a linear operator
acting on the variables x = (x1, . . . , xn). If the polynomial

T

(
n∏

i=1

(xi + x̂i)

)

is a stable polynomial of variables x and x̂ = (x̂1, x̂2, . . . , x̂n), then T preserves
real stability.

Once multivariate polynomials are shown be stable, we can then reduce them
to real stable univariate polynomials by using the following operations.

Lemma 2.2 ([16, Lemma 2.4]). Given i, j ∈ [n], the following operations preserve
real stability of f ∈ R[x]:

1. Differentiation: f 7→ ∂f/∂xi.

2. Diagonalization: f 7→ f |xi=xj
.

3. Specialization: for a ∈ R, f 7→ f |xi=a.

Given two real-rooted polynomials f(x) and g(x) with positive leading coef-
ficients, we say that g(x) interlaces f(x), denoted g(x) ⪯ f(x), if

· · · ≤ s2 ≤ r2 ≤ s1 ≤ r1,

where {rj} and {sk} are the sets of zeros of f(x) and g(x), respectively. Following
Liu and Wang [9], a sequence {fn(x)}n≥0 of real polynomials with positive leading
coefficients is said to be a generalized Sturm sequence if the polynomial fn(x) has
only real roots and fn(x) ⪯ fn+1(x) for any n ≥ 0.

The following theorem provides a general approach to obtain generalized
Sturm sequences from bivariate stable polynomials.

Theorem 2.3. Suppose that F (x, y) =
∑n

j=0 fj(x)y
j is a bivariate polynomial

with real coefficients. If F (x, y) is stable, then the polynomial fj(x) has only real
zeros for any 0 ≤ j ≤ n and moreover {fn−j(x)}nj=0 forms a generalized Sturm
sequence.

In order to prove Theorem 2.3, we need the Hermite–Biehler Theorem, which
reveals the close connection between interlacing and stability.

Lemma 2.4 (Hermite–Biehler, [13, Th. 6.3.4]). Let f(z) and g(z) be two non-
constant polynomials with real coefficients. Then the following statements are
equivalent:
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• f(z) and g(z) have only real zeros, and moreover g(z) ⪯ f(z);

• the polynomial f(z) + ig(z) is stable.

Now we are at the position to give a proof of Theorem 2.3. Note that our
proof is similar to that of Newton’s inequality, see [8, p. 104].

Proof of Theorem 2.3. By taking the k-th order partial derivative with respect
to y of the real stable polynomial

F (x, y) =
n∑

j=0

fj(x)y
j,

it follows from Lemma 2.2 that
n∑

j=k

(j)kfj(x)y
j−k

is real stable, where (j)k = j(j − 1) · · · (j − k + 1). Note that if y ∈ H+ then

−
1

y
∈ H+. Hence, we obtain the real stability of

yn−k

n∑
j=k

(j)kfj(x)(−
1

y
)j−k =

n∑
j=k

(−1)j−k(j)kfj(x)y
n−j. (1)

Similarly, by taking the (n − k − 1)-th order the partial derivative with respect
to y of (1), we get the real stability of

k+1∑
j=k

(−1)j−k(j)k(n− j)n−k−1fj(x)y
k−j+1

= k!(n− k)!fk(x)y − (k + 1)!(n− k − 1)!fk+1(x)

= (k + 1)!(n− k − 1)!

(
n− k

k + 1
fk(x)y − fk+1(x)

)
.

Replacing y by
k + 1

n− k
y, it follows that

fk+1(x)− fk(x)y

is real stable and so is

y(fk+1(x)− fk(x)(−
1

y
)) = fk(x) + yfk+1(x).

Therefore, it follows from Lemma 2.4 that fk+1(x) ⪯ fk(x). This completes the
proof of Theorem 2.3.
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3 Proof of Theorem 1.2
The main objective of this section is to prove Theorem 1.2. We first recall
Brändén’s multivariate Eulerian polynomial and then introduce a multivariate
refinement of Nunge’s Eulerian polynomials on segmented permutations. We
next show that it can be obtained by acting on Brändén’s multivariate Eulerian
polynomial with a stability-preserving linear operator.

Before presenting our result, let us first recall Brändén’s multivariate Eulerian
polynomial. Given a permutation π ∈ Sn, let

DT (π) = {πi : πi > πi+1} and

AT (π) = {πi+1 : πi < πi+1}

be the descent top set and the ascent top set, respectively. For T a set with entries
from [n], we let xT =

∏
i∈T xi. Brändén defined a real multivariate polynomial

An(x,y) as follows:

An(x,y) =
∑
π∈Sn

w(π), where w(π) = xDT (π)yAT (π). (2)

For example, w(251634) = y5x5y6x6y4. Clearly, An(x,y) is multiaffine. Brändén
proved the following result.

Lemma 3.1. For any positive integer n, the polynomial An(x,y) is stable.

For a proof of Lemma 3.1 and further generalizations, we refer the reader
to [3, 4, 7, 15]. By diagonalizing the variables xi to x, specializing yi to 1, it
follows that

An(x) =
∑
π∈Sn

x|DT (π)| =
∑
π∈Sn

xdes(π)

is stable. Since An(x) is univariate, it is equivalent to say that An(x) has only
real zeros.

We next give our multivariate Eulerian polynomials on segmented permuta-
tions. Given a segmented permutation σ ∈ Pn, let

DT (σ) = {σi : σi > σi+1 and there is no bar in the slot between σi and σi+1},

AT (σ) = {σi+1 : σi < σi+1 and there is no bar in the slot between σi and σi+1},

DT S(σ) = {σi : σi > σi+1 and there is a bar in the slot between σi and σi+1}, and

AT S(σ) = {σi+1 : σi < σi+1 and there is a bar in the slot between σi and σi+1}

be the descent top set, the ascent top set, the descent top segment set and the
ascent top segment set, respectively. Let αn(x,y, z,w) be a real multivariate
multiaffine polynomial defined as

αn(x,y, z,w) =
∑
σ∈Pn

w′(σ), where w′(σ) = xDT (σ)yAT (σ)zDT S(σ)wAT S(σ).

(3)

6



For example, w′(2|516|34) = w5x5y6z6y4. The main result of this section is stated
as follows.

Theorem 3.2. For any positive integer n, the polynomial αn(x,y, z,w) is stable.

Proof. To prove this theorem, we first establish an identity, which relates the
polynomial αn(x,y, z,w) to Brändén’s polynomial An(x,y). From the defini-
tion of An(x,y), it is clear to see that for any permutation π there is a one-to-one
correspondence between variables appearing in w(π) and slots of two adjacent
letters in π. Given a permutation π ∈ Sn, we can generate a segmented per-
mutation σ ∈ Pn by deciding whether to insert a bar in every slot between two
adjacent letters. If a bar is inserted in a slot followed by a descent top (respec-
tively, preceding an ascent top), namely i, then the descent top (respectively, the
ascent top) will be replaced by a descent top segment (respectively, an ascent
top segment) and hence the corresponding variable xi (respectively, yi) will be
replaced by zi (respectively, wi). Then, for any segmented permutation σ there
is a one-to-one correspondence between variables appearing in w′(σ) and slots of
two adjacent letters in σ. Hence, together with the fact that both An(x,y) and
αn(x,y, z,w) are multiaffine, we obtain that

αn(x,y, z,w) =
n∏

j=2

(1 + wj
∂

∂yj
)(1 + zj

∂

∂xj

)An(x,y). (4)

We next prove the stability of αn(x,y, z,w) via (4). For 2 ≤ j ≤ n, let Tj =
1 + zj

∂
∂xj

be a linear operator defined on R[x,y, z,w]MA. Since the polynomial

Tj

( n∏
i=1

(xi + x̂i)(yi + ŷi)(zi + ẑi)(wi + ŵi)
)

= (xj + x̂j + zj)
∏
k ̸=j

(xk + x̂k)×
n∏

i=1

(yi + ŷi)(zi + ẑi)(wi + ŵi)

is stable, it follows from Lemma 2.1 that the linear operator Tj preserves stability,
Similarly, the linear operator 1+wj

∂
∂yj

defined on R[x,y, z,w]MA also preserves
stability for any 2 ≤ j ≤ n. Therefore, we obtain that their product

∏n
j=2(1 +

wj
∂

∂yj
)(1 + zj

∂
∂xj

) preserves stability. Since An(x,y) is stable, we get the desired
stable property of αn(x,y, z,w) by (4). This completes the proof.

By diagonalizing the variables xi to x, specializing yi to 1, and substituting
zi and wi by t, it follows that

Theorem 3.3. For any positive integer n, the polynomial

αn(t, q) =
∑
σ∈Pn

tdes(σ)qseg(σ)

is stable.
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Now it is time for us to prove Theorem 1.2.

Proof of Theorem 1.2. Since αn(t, 1) = Pn(t), if follows that Pn(t) is stable and
hence real-rooted as a univariate polynomial with real coefficients. For the real-
rootedness of Kn,j(x) and Ln,i(x), we shall apply Theorem 2.3 to αn(t, q). Since

αn(t, q) =
n−1∑
j=0

Kn,j(t)q
j,

we get that the polynomial sequence {Kn,n−j−1(t)}n−1
j=0 forms a generalized Sturm

sequence. Similarly, since

αn(t, q) =
n−1∑
i=0

Ln,i(q)t
i,

we get that the polynomial sequence {Ln,n−i−1(t)}n−1
i=0 forms a generalized Sturm

sequence. This completes the proof of Theorem 1.2.

Before ending this paper, we would like to express αn(t, q) and Pn(t) in terms
of An(t), which leads to an alternative proof of Theorem 3.3.

Theorem 3.4. For any positive integer n, we have

αn(t, q) = (1 + q)n−1An

(
t+ q

1 + q

)
, (5)

and

Pn(t) = 2n−1An

(
t+ 1

2

)
. (6)

Proof. By the following identity [10, Corollary 2.5]:

K(n, i, j) =
n−1∑
k=0

(
k

i

)(
n− 1− k

i+ j − k

)
A(n, k),

we have that

αn(t, q) =
n−1∑
i=0

n−i−1∑
j=0

n−1∑
k=0

(
k

i

)(
n− 1− k

i+ j − k

)
A(n, k)tiqj

=
n−1∑
k=0

A(n, k)
k∑

i=0

(
k

i

)
tiqk−i

n−i−1∑
j=k−i

(
n− 1− k

i+ j − k

)
qi+j−k

=
n−1∑
k=0

A(n, k)
k∑

i=0

(
k

i

)
tiqk−i(1 + q)n−1−k
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=
n−1∑
k=0

A(n, k)(1 + q)n−1−kqk
k∑

i=0

(
k

i

)
(t/q)i

=
n−1∑
k=0

A(n, k)(1 + q)n−1−kqk(1 + t/q)k

=
n−1∑
k=0

A(n, k)(1 + q)n−1−k(t+ q)k

= (1 + q)n−1

n−1∑
k=0

A(n, k)

(
t+ q

1 + q

)k

.

This completes the proof of (5). Since Pn(t) = αn(t, 1), the equation (6) follows
from (5). This completes the proof.

Alternative proof of Theorem 3.3. Let t ∈ H+ and q ∈ H+. Then we have that
t + q ∈ H+ and 1 + q ∈ H+ and thus t+q

1+q
will not be a negative real number.

Since the Eulerian polynomial An(x) has only negative real zeros, the polynomial
αn(t, q) will be non-zero whenever t ∈ H+ and q ∈ H+. Therefore, the polynomial
αn(t, q) is stable.

We remark that comparing (6) with the well-known formula of Eulerian poly-
nomials:

An(t)

(1− t)n+1
=

∞∑
k=0

(k + 1)ntk,

it follows that

Pn(t)

(1− t)n+1
=

∞∑
k=1

(1 + t)k−1 kn

2k+1

which has appeared in [10, Proposition 3.5].
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