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Abstract. Brenti conjectured that, for any finite Coxeter group, the descent
generating polynomial has only real zeros, and he left the type D case open.
Dilks, Petersen, and Stembridge proposed a companion conjecture, which
states that, for any irreducible finite Weyl group, the affine descent gener-
ating polynomial has only real zeros, and they left the type B and type D
cases open. By developing the theory of s-Eulerian polynomials, Savage and
Visontai confirmed the type D case of the former conjecture and the type B
case of the latter conjecture. In this paper, we give an analytic approach to
these two combinatorial conjectures. In particular, based on the Hermite–
Biehler theorem and the theory of linear transformations preserving Hurwitz
stability, we obtain the Hurwitz stability of certain polynomials related to
the descent generating polynomials of type D, and thus give an alternative
proof of Savage and Visontai’s results. This new approach also enables us to
prove Hyatt’s conjectures on the interlacing property of half Eulerian poly-
nomials of type B and type D, and to prove that the h-polynomial of certain
subcomplexes of Coxeter complexes of type D has only real zeros. We fur-
ther study the Hurwitz stability of certain polynomials related to the affine
descent generating polynomials of type D, and completely confirm Dilks,
Petersen, and Stembridge’s conjecture.
AMS Classification 2010: 05A15, 26C10, 30C15, 20F55
Keywords: Descent, affine descent, interlacing, compatibility, Hurwitz sta-
bility.
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1 Introduction

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. For σ =
(σ1, σ2, . . . , σn) ∈ Sn, let

Des (σ) = {i ∈ [n− 1] : σi > σi+1}

denote the set of descents of σ, and let des (σ) = |Des(σ)|. The Eulerian
polynomials Sn(z) are usually defined as the descent generating function
over Sn, namely,

Sn(z) =
∑
σ∈Sn

zdes (σ).

These polynomials are not only of interest in combinatorics, but also of sig-
nificance in geometry, see [30]. For example, the coefficients of Eulerian
polynomials can be interpreted as the h-vectors of the Coxeter complexes of
type A, or as the even Betti numbers of certain toric varieties, see [20, 33, 35].

There are many interesting generalizations of Eulerian polynomials, see
[14, 19, 26, 32, 38] and references therein. In this paper, we focus on the
study of descent generating polynomials for finite Coxeter groups [14] and
affine descent generating polynomials for irreducible finite Weyl groups [19].
The combinatorial aspects and geometric aspects of these polynomials have
been extensively studied. Here we will explore their analytic aspects. Frobe-
nius [21] first showed that the classical Eulerian polynomials have only real
zeros. Brenti [14] conjectured that the descent generating polynomial for ev-
ery finite Coxeter group has only real zeros. Dilks, Petersen, and Stembridge
[19] conjectured that the affine descent generating polynomial for every irre-
ducible finite Weyl group has only real zeros. Various examples, techniques
and developments on unimodality, log-concavity, and real-rootedness in com-
binatorics can be found in [11, 12, 13, 28, 34]. The main objective of this
paper is to use the Hermite–Biehler theorem to study Brenti’s conjecture as
well as Dilks, Petersen, and Stembridge’s conjecture.

Let us first give an overview of Brenti’s conjecture and Dilks, Petersen,
and Stembridge’s conjecture. We assume that the reader is familiar with
Coxeter groups and root systems, see [5, 24]. Let W be a finite Coxeter
group generated by {s1, s2, . . . , sn}. The length of each σ ∈ W is defined as
the number of generators in one of its reduced expressions, denoted ℓ(σ). We
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say that i is a descent of σ if ℓ(σsi) < ℓ(σ). Let Des (σ) denote the descent
set of σ, and let des(σ) = |Des (σ)| denote the descent number. Let W (z)
denote the descent generating polynomial of W , namely,

W (z) =
∑
σ∈W

zdes (σ).

In a geometric context, this polynomial is also the h-polynomial of the Cox-
eter complex of W , for more information see [36, 37]. We use An(z) (resp.
Bn(z), Cn(z) or Dn(z)) to represent W (z) when W is of type An (resp. Bn,
Cn or Dn). Note that the polynomial An(z) is just the classical Eulerian
polynomial Sn(z). The following result was conjectured by Brenti [14] and
then proved by Savage and Visontai [32].

Theorem 1.1 ([32, Theorem 3.15]). For any finite Coxeter group W , the
descent generating polynomial W (z) has only real zeros.

Dilks, Petersen, and Stembridge [19] proposed a companion conjecture
to Brenti’s conjecture. Suppose that W is an irreducible finite Weyl group
generated by {s1, s2, . . . , sn}. Let s0 be the reflection corresponding to the
highest root. For each σ ∈ W , we say that i is an affine descent of σ if either
i ∈ Des (σ) for 1 ≤ i ≤ n, or i = 0 and ℓ(σs0) > ℓ(σ). Let D̃es (σ) denote the
set of affine descents of σ, and let d̃es (σ) = |D̃es (σ)|. It is worth mentioning
that the affine descents were first introduced by Cellini [15] for finite Weyl
groups, for further developments see [16, 17, 22, 27, 29]. Analogous to the
definition of W (z), let W̃ (z) to be the affine descent generating polynomial
of W , namely

W̃ (z) =
∑
σ∈W

zd̃es (σ).

Similarly, we use Ãn(z) (resp. B̃n(z), C̃n(z) or D̃n(z)) to represent W̃ (z)
when W is of type An (resp. Bn, Cn or Dn). Dilks, Petersen, and Stembridge
obtained many interesting properties of W̃ (z), such as a connection with the
h-polynomial of the reduced Steinberg torus. They also showed that the
affine Eulerian polynomials have unimodal coefficients. Furthermore, Dilks,
Petersen, and Stembridge proposed the following conjecture.

Conjecture 1.2 ([19, Conjecture 4.1]). For any irreducible finite Weyl group
W , the affine Eulerian polynomial W̃ (z) has only real zeros.
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Dilks, Petersen, and Stembridge [19] remarked that the affine descent
generating polynomials Ãn(z) and C̃n(z) are both multiples of the classical
Eulerian polynomial Sn(z) and hence the above conjecture is true for the
groups of type A and C, see also [22, 29]. They also computed the affine
Eulerian polynomials for all the exceptional groups [19, Table 1], and checked
that the above conjecture also holds for these groups. Dilks, Petersen, and
Stembridge [19] left the type B and type D cases open. Savage and Visontai’s
novel approach to Brenti’s conjecture also enables them to settle the above
conjecture for the groups of type B.

In Section 2 we shall give a brief overview of Savage and Visontai’s ap-
proach to Brenti’s conjecture and Dilks, Petersen, and Stembridge’s con-
jecture. One can see that the notion of interlacing polynomials plays an
important role in their work. Given two real-rooted polynomials f(z) and
g(z) with positive leading coefficients, let {ri} be the set of zeros of f(z)
and {sj} the set of zeros of g(z). We say that g(z) interlaces f(z), denoted
g(z) ⪯ f(z), if deg f(z) = deg g(z) or deg f(z) = deg g(z) + 1, and

· · · ≤ s2 ≤ r2 ≤ s1 ≤ r1.

Savage and Visontai [32] obtained the following result.

Theorem 1.3. Both Dn(z) and B̃n(z) have only real zeros. Moreover, there
holds

Dn(z) ⪯ B̃n(z).

This paper was motivated by understanding Theorem 1.3 from the view-
point of the Hermite–Biehler theorem, a basic result in the Routh–Hurwitz
theory [31]. Before stating the Hermite–Biehler theorem, let us first recall
some related definitions and notations. Let C denote the field of complex
numbers, and let C[z] denote the set of all polynomials in z with complex
coefficients. A polynomial f(z) ∈ C[z] is said to be Hurwitz stable (respec-
tively, weakly Hurwitz stable) if p(z) ̸= 0 whenever Re z ≥ 0 (respectively,
Re, z > 0), where Re z denotes the real part of z. A useful criterion for de-
termining stability was given by Hurwitz [25], which we shall explain below.
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Given a polynomial p(z) =
∑n

k=0 an−kz
k, for any 1 ≤ k ≤ n let

∆k(p) = det



a1 a3 a5 . . . a2k−1

a0 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

0 a0 a2 . . . a2k−r
... ... ... ...
0 0 0 . . . ak


k×k

.

These determinants are known as the Hurwitz determinants of p(z). Hurwitz
showed that the stability of p(z) is uniquely determined by the signs of ∆k(p).

Theorem 1.4 ([25]). Suppose that p(z) =
∑n

k=0 an−kz
k is a real polynomial

with a0 > 0. Then p(z) is Hurwitz stable if and only if the corresponding
Hurwitz determinants ∆k(p) > 0 for any 1 ≤ k ≤ n.

The above result is usually called the Routh-Hurwitz stability criterion
since it is equivalent to the Routh test, for more historical background see
[31, p. 393].

Suppose that

f(z) =
n∑

k=0

akz
k.

Let

fE(z) =

⌊n/2⌋∑
k=0

a2kz
k and fO(z) =

⌊(n−1)/2⌋∑
k=0

a2k+1z
k. (1)

The Hermite–Biehler theorem establishes a connection between the Hurwitz
stability of f(z) and the interlacing property of fE(z) and fO(z).

Theorem 1.5 ([10, Theorem 4.1], [31, p. 197]). Let f(z) be a polynomial
with real coefficients, and let fE(z) and fO(z) be defined as in (1). Suppose
that fE(z)fO(z) ̸≡ 0. Then f(z) is weakly Hurwitz stable if and only if fE(z)
and fO(z) have only real and non-positive zeros, and fO(z) ⪯ fE(z).

Combining Theorems 1.3 and 1.5, we know that the polynomial

Pn(z) = Dn(z
2) +

1

2z
B̃n(z

2) (2)
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is weakly Hurwitz stable. The construction of Pn(z) is based on the relations
among An(z), Bn(z), Cn(z), Dn(z) and B̃n(z). We are thus motivated to prove
the Hurwitz stability of Pn(z) without using the interlacing property of Dn(z)

and B̃n(z). This eventually leads to a new proof of Theorem 1.3, which
will be given in Section 3. We would like to point out that Borcea and
Brändén’s work [6] on the characterization of linear operators preserving
Hurwitz stability is critical to our approach. This new approach also has some
advantages. As will be shown in Section 4, we can use the Hurwitz stability
of Pn(z) to prove the interlacing property of the half Eulerian polynomials
of type B and type D conjectured by Hyatt [26]. Zaslavsky [41] initiated
the study of subcomplexes of Coxeter complexes, which were further studied
by Stembridge [36]. In Section 5, we shall investigate the Hurwitz stability
of some polynomials closely related to Pn(z), and then prove that the h-
polynomial of Coxeter subcomplex of type D has only real zeros.

It is natural to consider whether the real-rootedness of D̃n(z) can be
proved in the same manner. Precisely, we aim to look for some Hurwitz
stable polynomial f(z) such that D̃n(z) appears as fE(z) or fO(z). We
noticed the following remarkable identity

D̃n(z) = B̃n(z)− 2nz Dn−1(z), (3)

due to Dilks, Petersen, and Stembridge [19]. By inspection of (2) and (3),
we are led to study the Hurwitz stability of the polynomial

Qn(z) = 2Pn(z)− 2nzPn−1(z). (4)

It is easy to verify that

QE
n (z) = 2Dn(z)− nB̃n−1(z) and QO

n (z) =
D̃n(z)

z
.

Computer experiments suggest that Qn(z) is weakly Hurwitz stable, which
will be proved in Section 6. Although we could not give a proof of the Hurwitz
stability of Qn(z) similar to our proof of the Hurwitz stability of Pn(z), we
are able to prove both QO

n (z) and QE
n (z) have only real and non-positive zeros

and moreover QO
n (z) ⪯ QE

n (z). Thus we completely confirm Conjecture 1.2.
It should be mentioned that introducing Qn(z) is essential for proving that
D̃n(z) has only real zeros, and its benefits will be clear in Section 6.

6



2 Savage and Visontai’s proof of Theorem 1.3

The aim of this section is to give an overview of Savage and Visontai’s proof
of Theorem 1.3. We will also recall some related results which will be used
in subsequent sections.

Let us begin with the definition of s-inversion sequences. Given a sequence
s = (s1, s2, . . .) of positive integers, an n-dimensional s-inversion sequence is
a sequence e = (e1, . . . , en) ∈ Nn such that ei < si for each 1 ≤ i ≤ n. Denote
the set of n-dimensional s-inversion sequences by I

(s)
n . To prove Theorem 1.3,

Savage and Visontai [32] introduced a statistic ascD on inversion sequences
e = (e1, . . . , en) ∈ I

(s)
n for s = (2, 4, 6, . . . ), which is defined as the cardinality

of the following set

AscD(e) = {i ∈ [n− 1] :
ei
i
<

ei+1

i+ 1
} ∪ {0 : if e1 + e2/2 ≥ 3/2}.

Savage and Visontai [32] further showed that the descent generating poly-
nomial Dn(z) can be interpreted as the generating function of the statistic
ascD over I

(2,4,6,... )
n , precisely,

2Dn(z) =
∑

e∈I(2,4,6,... )n

zascD(e).

Let Tn(z) = 2Dn(z). Clearly, Tn(z) has only real zeros if and only if Dn(z)
has only real zeros. To prove that Tn(z) has only real zeros, Savage and
Visontai introduced the following refinement of Tn(z):

Tn,i(z) =
∑

e∈I(2,4,6,... )n

χ(en = i) zascD(e) ,

where χ(φ) is 1 if the statement φ is true and 0 otherwise. Note that

2Dn(z) = Tn(z) =
2n−1∑
i=0

Tn,i(z). (5)

They showed that, for any n ≥ 3 and 0 ≤ i ≤ 2n − 1, these refined polyno-
mials satisfy the following simple recurrence relation:

Tn,i(z) = z

⌈
n−1
n

i
⌉
−1∑

j=0

Tn−1,j(z) +
2n−3∑

j=
⌈
n−1
n

i
⌉Tn−1,j(z), (6)
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where ⌈t⌉ represents the smallest integer larger than or equal to t.
By using the theory of compatible polynomials developed by Chudnovsky

and Seymour [18], Savage and Visontai inductively proved that the polyno-
mials satisfying such recurrence relations are compatible, and hereby proved
that Tn(z) has only real zeros. Let us recall some related concepts. Suppose
that f1(z), . . . , fm(z) are polynomials with real coefficients. These polynomi-
als are said to be compatible if, for any nonnegative numbers c1, . . . , cm, the
polynomial

c1f1(z) + c2f2(z) + · · ·+ cmfm(z)

has only real zeros, and they are said to be pairwise compatible if, for all
1 ≤ i < j ≤ m, the polynomials fi(z) and fj(z) are compatible. The
following remarkable lemma shows that how the two concepts are related.

Lemma 2.1 ([18, Lemma 2.2]). The polynomials f1(z), . . . , fm(z) with pos-
itive leading coefficients are pairwise compatible if and only if they are com-
patible.

Given a polynomial sequence (f1(z), . . . , fm(z)) with real coefficients, de-
fine another polynomial sequence (g1(z), . . . , gm′(z)) by the equations

gk(z) =

tk−1∑
ℓ=1

zfℓ(z) +
m∑

ℓ=tk

fℓ(z), for 1 ≤ k ≤ m′, (7)

where 1 ≤ t1 ≤ . . . ≤ tm′ ≤ m + 1. Savage and Visontai obtained the
following useful result.

Theorem 2.2 ([32, Theorem 2.3]). Given a sequence of real polynomials
f1(z), . . . , fm(z) with positive leading coefficients, let g1(z), . . . , gm′(z) be de-
fined as in (7). If, for all 1 ≤ i < j ≤ m,

(1) fi(z) and fj(z) are compatible, and

(2) zfi(z) and fj(z) are compatible,

then, for all 1 ≤ i < j ≤ m′,

(1’) gi(z) and gj(z) are compatible, and
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(2’) zgi(z) and gj(z) are compatible.

As pointed out by Savage and Visontai, the description of the above the-
orem can be simplified by using the notion of interlacing if the polynomials
f1(z), . . . , fm(z) have only nonnegative coefficients. Interlacing of two poly-
nomials is closely related to compatibility in the sense of the following, due
to Wagner [40].

Theorem 2.3 ([40, Lemma 3.4]). Suppose that f(z) and g(z) are two poly-
nomials with nonnegative coefficients. Then the following statements are
equivalent:

(1) f(z) interlaces g(z), namely f(z) ⪯ g(z);

(2) f(z) and g(z) are compatible, and zf(z) and g(z) are compatible.

Parallel to the concept of pairwise compatibility, we say that a sequence of
real polynomials f1(z), . . . , fm(z) with positive leading coefficients is pairwise
interlacing if fi(z) ⪯ fj(z) for all 1 ≤ i < j ≤ m. The following result
provides an alternative description of Theorem 2.2 when all the polynomials
involved have only nonnegative coefficients.

Theorem 2.4. Given a polynomial sequence (f1(z), . . . , fm(z)) with nonneg-
ative coefficients, let g1(z), . . . , gm′(z) be polynomials defined as in (7). If
(f1(z), . . . , fm(z)) is pairwise interlacing, then so is (g1(z), . . . , gm′(z)).

Based on (6) and Theorem 2.4, Savage and Visontai obtained the follow-
ing result.

Theorem 2.5. For n ≥ 4, the sequence (Tn,0(z), Tn,0(z), . . . , Tn,2n−1(z)) is
pairwise interlacing.

By (5) and (6) it follows that

Dn(z) =
1

2
Tn+1,0(z). (8)

Savage and Visontai also proved that

B̃n(z) = Tn+1,n+1(z). (9)

Theorem 1.3 immediately follows from (8), (9), and Theorem 2.5.

9



3 A new proof of Theorem 1.3

The aim of this section is to give an alternative proof of Theorem 1.3 different
from the former approach given by Savage and Visontai. To this end, we need
to prove the weak Hurwitz stability of Pn(z) defined by (2) without using
the interlacing property of Dn(z) and B̃n(z).

Let us first recall some formulas on the Eulerian polynomials. For the
Eulerian polynomials of type A and B, it is known that

An−1(z)

(1− z)n+1
=
∑
i≥0

(i+ 1)nzi, (10)

and

Bn(z)

(1− z)n+1
=
∑
i≥0

(2i+ 1)nzi, (11)

see [14] and references therein.
By (10) and (11), we have

(z + 1)n+1An−1(z) = (1− z2)n+1
∑
i≥0

(i+ 1)nzi

= (1− z2)n+1

(
2nz

∑
i≥0

(i+ 1)nz2i +
∑
i≥0

(2i+ 1)nz2i

)
,

leading to the following identity,

(z + 1)n+1An−1(z) = 2nzAn−1(z
2) +Bn(z

2). (12)

It is well known that An(z) has only negative real zeros, and hence (z +
1)n+1An−1(z) is weakly Hurwitz stable for any n ≥ 1. By Theorem 1.5, the
identity (12) implies that Bn(z) ⪯ An−1(z).

For the Eulerian polynomials of type D, Stembridge [36, Lemma 9.1]
discovered that Dn(z) has a close connection with the Eulerian polynomials
of type A and type B:

Dn(z) = Bn(z)− n2n−1zAn−2(z). (13)
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For the affine Eulerian polynomials of type B and type C, Dilks, Petersen,
and Stembridge established the following identities:

C̃n(z) = 2nzAn−1(z), (by [19, Corollary 5.7])

2C̃n(z) = B̃n(z) + 2nzCn−1(z), (by [19, Proposition 6.1])

Bn(z) = Cn(z) (by [19, Proposition 6.3]).

It is readily seen that

B̃n(z) = 2z (2nAn−1(z)− nBn−1(z)) . (14)

The first main result of this section is as follows.

Theorem 3.1. Let Pn(z) be defined by (2). Then for any n ≥ 2,

Pn(z) = (z + 1)n+1An−1(z)− nz(z + 1)nAn−2(z). (15)

Proof. We have

Pn(z) =Dn(z
2) +

1

2z
B̃n(z

2) (by (2))

=
(
Bn(z

2)− n2n−1z2An−2(z
2)
)

(by (13))
+ z
(
2nAn−1(z

2)− nBn−1(z
2)
)

(by (14))

=
(
2nzAn−1(z

2) +Bn(z
2)
)
− nz

(
2n−1zAn−2(z

2) +Bn−1(z
2)
)

=(z + 1)n+1An−1(z)− nz(z + 1)nAn−2(z) (by (12)).

This completes the proof.

By the above theorem, to prove the weak Hurwitz stability of Pn(z) it is
sufficient to prove the weak Hurwitz stability of

P̂n(z) = (z + 1)An−1(z)− nzAn−2(z). (16)

To prove that P̂n(z) is weakly Hurwitz stable, we shall use a deep theory on
linear operators preserving weak Hurwitz stability, which was developed by
Borcea and Brändén [6]. The notion of Hurwitz stability admits an extension
from univariate polynomials to multivariate polynomials. Let C[z1, z2, . . . , zn]
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denote the set of polynomials in z1, z2, . . . , zn. We say that f(z1, z2, . . . , zn) ∈
C[z1, z2, . . . , zn] is weakly Hurwitz stable if f(z1, z2, . . . , zn) ̸= 0 for all tuples
(z1, z2, . . . , zn) ∈ Cn with Re zi > 0 for 1 ≤ i ≤ n. Let Cm[z] denote the
set of polynomials over C with degree less than or equal to m. Borcea and
Brändén obtained the following characterization theorem. For related results,
see [6, 7, 8].

Theorem 3.2 ([7, Theorem 3.3]). Let m ∈ N and T : Cm[z] → C[z] be a
linear operator. Then T preserves weak Hurwitz stability if and only if either

(a) T has range of dimension at most one and is of the form T (f) = α(f)P ,
where α is a linear functional on Cm[z] and P is a weakly Hurwitz stable
polynomial, or

(b) The polynomial

T [(zw + 1)m] =
m∑
k=0

(
m

k

)
T (zk)wk

is weakly Hurwitz stable in two variables z, w.

The polynomial T [(zw + 1)m] is called the algebraic symbol of the linear
operator T .

We proceed to prove the weak Hurwitz stability of P̂n(z) defined in (16).

Theorem 3.3. For any positive integer n ≥ 2 the polynomial P̂n(z) is weakly
Hurwitz stable.

Proof. It is known that the Eulerian polynomials An(z) satisfy the following
recurrence relation:

An(z) = (nz + 1)An−1(z)− z(z − 1)A′
n−1(z)

= (n+ 1)(zAn−1(z))− (z − 1)(zAn−1(z))
′,

with the initial condition A0(z) = 1. Thus, we find that

P̂n(z) = nz (zAn−2(z))−
(
z2 − 1

)
(zAn−2(z))

′ .
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This formula could be restated as

P̂n(z) = T (zAn−2(z)),

where
T = nz − (z2 − 1)

d

dz
denotes the operator acting on Cn[z]. It is easy to see that T is a linear
operator.

The algebraic symbol of T is given by

T [(zw + 1)n] = n(z + w)(zw + 1)n−1.

It is easy to see that both (z+w) and (zw+1) are weakly Hurwitz stable in
variables z, w. Thus T [(zw + 1)n] is weakly Hurwitz stable in variables z, w.

By Theorem 3.2, the linear operator T preserves stability. The weak
Hurwitz stability of P̂n immediately follows from that of zAn−2(z). This
completes the proof.

Now we are to prove Theorem 1.3.

Proof of Theorem 1.3. Combining Theorems 3.1 and 3.3, we get that Pn(z)
is weakly Hurwitz stable. Now Theorem 1.3 immediately follows from (2)
and Theorem 1.5.

4 Hyatt’s conjectures

In this section we aim to use the Hurwitz stability of P̂n(z) defined in (16) to
prove some conjectures proposed by Hyatt [26] during his study of descent
generating polynomials of finite Coxeter groups.

Let us first give an overview of Hyatt’s conjectures. Recall that the
Coxeter group Bn of type B of rank n can be regarded as the group of all
bijections σ of the set ±[n] = {±1,±2, . . . ,±n} such that σ(−i) = −σ(i) for
all i ∈ ±[n]. We usually write σ in one-line notation (σ1, σ2, . . . , σn), where
σi = σ(i). The half Eulerian polynomials of type B are given by

B+
n (z) =

∑
σ∈Bn:σn>0

zdesB (σ) and B−
n (z) =

∑
σ∈Bn:σn<0

zdesB (σ).
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The Coxeter group Dn of type D of rank n is composed of those even signed
permutations of Bn. In the same manner, the half Eulerian polynomials of
type D are defined as

D+
n (z) =

∑
σ∈Dn:σn>0

zdesD (σ) and D−
n (z) =

∑
σ∈Dn:σn<0

zdesD (σ).

Hyatt proposed the following conjecture, which has been confirmed by
himself in [26].

Conjecture 4.1 ([26, Corollaries 4.6 and 4.8]). (i) For n ≥ 1, B+
n (z) inter-

laces znB+
n (1/z) and thus Bn(z) = B+

n (z) + znB+
n (1/z) has only real zeros.

(ii) For n ≥ 2, D+
n (z) interlaces znD+

n (1/z) and thus Dn(z) = D+
n (z) +

znD+
n (1/z) has only real zeros.

We proceed to prove Hyatt’s conjecture on the half Eulerian polynomials.
The following result establishes a connection between the classical Eulerian
polynomials and the half-Eulerian polynomials of type B.

Theorem 4.2. For any n ≥ 1, we have

(z + 1)nAn−1(z) = B+
n (z

2) +
1

z
B−

n (z
2). (17)

Proof. From the equality [3, (7.5)]

B+
n (z)

(1− z)n
=
∑
i≥0

((2i+ 1)n − (2i)n) zi (18)

and (11) as well as the fact Bn(z) = B+
n (z) +B−

n (z), we get that

B−
n (z)

(1− z)n
=
∑
i≥1

((2i)n − (2i− 1)n) zi. (19)
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By (10), we obtain that

(z + 1)nAn−1(z) = (1− z2)n(1− z)
∑
i≥0

(i+ 1)nzi

= (1− z2)n

(∑
i≥0

(i+ 1)nzi −
∑
i≥0

(i+ 1)nzi+1

)

= (1− z2)n

(∑
i≥0

(2i+ 1)nz2i −
∑
i≥1

(2i)nz2i

)

+ (1− z2)n

(∑
i≥1

(2i)nz2i−1 −
∑
i≥1

(2i− 1)nz2i−1

)
.

The desired identity then immediately follows from (18) and (19).

Note that Athanasiadis and Savvidou [3, Proposition 7.2] obtained that
B+

n (z) is the even part of (z+1)nAn−1(z). As remarked by Athanasiadis and
Savvidou [3, Remark 7.3], similar formula can be derived from [1, Theorem
4.4], see also Athanasiadis [2, Proposition 2.2].

For the half-Eulerian polynomials of type D, we have the following result.

Theorem 4.3. Let P̂n(z) be defined as in (16). Then, for any n ≥ 2,

(z + 1)n−1P̂n(z) = D+
n (z

2) +
1

z
D−

n (z
2). (20)

Proof. First, we prove the following identity:

B̃n(z) = 2(zD+
n (z) +D−

n (z)). (21)

Recall that, if each σ of Bn is taken as a signed permutation, then the
descent statistics desDσ and d̃esB have the following combinatorial charac-
terization:

desD (σ) = χ(σ1 + σ2 < 0) + |{i ∈ [n− 1] : σi > σi+1}|,

and

d̃esB (σ) = χ(σ1 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn−1 + σn > 0),
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where χ(·) is 1 if the statement is true and 0 otherwise.
As shown by Savage and Visontai [32], under the involution

(σ1, σ2, . . . , σn) 7→ (−σn, . . . ,−σ2,−σ1),

the statistic d̃esB has the same distribution over Bn as the statistic
s̃tatB (σ) = χ(σ1 + σ2 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn > 0).

Hence,

B̃n(z) =
∑
σ∈B+

n

zs̃tatB (σ) +
∑
σ∈B−

n

zs̃tatB (σ)

= z
∑
σ∈B+

n

zdesDσ +
∑
σ∈B−

n

zdesD (σ).

Taking the involution on Bn:
(σ1, σ2, . . . , σn) 7→ (−σ1, σ2, . . . , σn),

we get ∑
σ∈B+

n

zdesD (σ) = 2D+
n (z) and

∑
σ∈B−

n

zdesD (σ) = 2D−
n (z),

which can be shown by an elementary but tedious analysis of cases. This
completes the proof of (21).

It is known that
Dn(z) = D+

n (z) +D−
n (z). (22)

Therefore,

(z + 1)n−1P̂n(z) =
1

z + 1
Pn(z) (by (15) and (16))

=
1

z + 1

(
Dn(z

2) +
1

2z
B̃n(z

2)

)
(by (2))

=
1

z + 1

(
D+

n (z
2) +D−

n (z
2) (by (22))

+
1

z

(
z2D+

n (z
2) +D−

n (z
2)
) )

(by (21))

= D+
n (z

2) +
1

z
D−

n (z
2),

as desired. The proof is complete.
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To prove Hyatt’s conjecture, we also need the following identities:
B−

n (z) = znB+
n (1/z), (23)

D−
n (z) = znD+

n (1/z), (24)
which have been proven by Hyatt [26]. See also [3, Lemma 7.1] for the type
B case.

Now we can prove Hyatt’s conjecture on half Eulerian polynomials.
Theorem 4.4. (i) For n ≥ 1, we have B+

n (z) ⪯ znB+
n (1/z).

(ii) For n ≥ 2, we have D+
n (z) ⪯ znD+

n (1/z).

Proof. Let us first prove (i). Since (z+1)nAn−1(z) has only non-positive real
zeros, Theorem 1.5 together with (17) implies that B+

n (z) ⪯ B−
n (z). By (23),

this shows that B+
n (z) ⪯ znB+

n (1/z). The proof is complete.
In the same manner, we can prove (ii). Note that, by Theorem 3.3, the

polynomial (z + 1)n−1P̂n(z) is weakly Hurwitz stable. Thus D+
n (z) ⪯ D−

n (z)
by (20) and Theorem 1.5. In view of (24), we get D+

n (z) ⪯ znD+
n (1/z). This

completes the proof of (ii).

5 h-Polynomials of subcomplexes of type D

Given a Coxeter group W , it is known that the h-polynomial of the correp-
sonding Coxeter complex is just the Eulerian polynomial W (z), see Björner
[4, Theorem 2.1]. Zaslavsky [41] first considered the subcomplexes of the
Coxeter complex, which are composed of faces fixed by a given group ele-
ment. It is often the case that these subcomplexes are isomorphic to Coxeter
complexes of smaller rank. But that is not the case for the Coxeter groups of
type D. Stembridge [36, Lemma 9.1] proved that the h-polynomials of such
subcomplexes are of the following form:

D⟨ℓ⟩
n (z) = Bn(z)− (n− ℓ)2n−1zAn−2(z), (25)

where ℓ is a nonnegative integer ℓ ≤ n.

Note that D
⟨0⟩
n (z) = Dn(z) and D

⟨n⟩
n (z) = Bn(z). Since both Dn(z) and

Bn(z) have only real zeros, it is natural to consider whether D⟨ℓ⟩
n (z) has only

real zeros for any 0 ≤ ℓ ≤ n. The main result of this sections is as follows.
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Theorem 5.1. For any n ≥ 2 and 0 ≤ ℓ ≤ n, the polynomial D⟨ℓ⟩
n (z) has

only real zeros.

As in Section 3, we are to prove the above theorem by using the Hermite–
Biehler theorem. To this end, we hope that D⟨ℓ⟩

n (z) also appears as fE(z) or
fO(z) for some stable polynomial f(z) as Dn(z) does in (2). By (12), we see
that

(z + 1)n+1An−1(z) = D⟨n⟩
n (z2) + 2nzAn−1(z

2).

By the proof of Theorem 3.1, we have

(z + 1)n+1An−1(z)− nz(z + 1)nAn−2(z) =

D⟨0⟩
n (z2) + z

(
2nAn−1(z

2)− nBn−1(z
2)
)
.

Observing the above two identities, we are motivated to consider the weak
Hurwitz stability of the polynomial

P ⟨ℓ⟩
n (z) = D⟨ℓ⟩

n (z2) + z
(
2nAn−1(z

2)− (n− ℓ)Bn−1(z
2)
)
. (26)

We obtain the following result.

Theorem 5.2. For any 0 ≤ ℓ ≤ n, let P
⟨ℓ⟩
n (z) be defined as in (26). Then,

we have

P ⟨ℓ⟩
n (z) = (z + 1)n+1An−1(z)− (n− ℓ)z(z + 1)nAn−2(z). (27)

Proof. By (25), the left hand side of (27) is equal to(
Bn(z

2)− (n− ℓ)2n−1z2An−2(z
2)
)
+ z

(
2nAn−1(z

2)− (n− ℓ)Bn−1(z
2)
)

=
(
2nzAn−1(z

2) +Bn(z
2)
)
− (n− ℓ)z

(
2n−1zAn−2(z

2) +Bn−1(z
2)
)

=(z + 1)n+1An−1(z)− (n− ℓ)z(z + 1)nAn−2(z),

where the last equality follows from (12). This completes the proof.

Thus, to prove that P
⟨ℓ⟩
n (z) is weakly Hurwitz stable, it is sufficient to

prove that

P̂ ⟨k⟩
n (z) = (z + 1)An−1(z) + kzAn−2(z)

is weakly Hurwitz stable for any k ≥ −n.
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Theorem 5.3. For any positive integer n ≥ 2 and any real number k ≥ −n,
the polynomial P̂ ⟨k⟩

n (z) is weakly Hurwitz stable.

Proof. Following the proof of Theorem 3.3, it is not hard to show that

P̂ ⟨k⟩
n (z) = T ⟨k⟩(zAn−2(z)),

where
T ⟨k⟩ = (nz + n+ k)− (z2 − 1)

d

dz

denotes the linear operator acting on Cn[z]. The algebraic symbol of T ⟨k⟩ is
given by

T ⟨k⟩[(zw + 1)n] = (zw + 1)n−1 ((k + n)(zw + 1) + n(z + w))

= n(zw + 1)n
(

z + w

zw + 1
+

k + n

n

)
.

We claim that
z + w

zw + 1
+

k + n

n

is weakly Hurwitz stable in variables z, w if k ≥ −n. To prove this, let

z =
x− 1

x+ 1
, w =

y − 1

y + 1
.

Note that Re z > 0 if and only if |x| > 1. It is obvious that

z + w

zw + 1
=

xy − 1

xy + 1
.

If Re z > 0 and Rew > 0, then |x| > 1 and |y| > 1, and hence |xy| > 1.
Therefore, we have Re xy−1

xy+1
> 0 and thus Re z+w

zw+1
> 0. Moreover, it is

clear that zw + 1 ̸= 0 whenever Re z > 0 and Rew > 0. It follows that
T ⟨k⟩[(zw + 1)n] is weakly Hurwitz stable in variables z, w.

By Theorem 3.2, the linear operator T ⟨k⟩ preserves stability. The weak
Hurwitz stability of P̂ ⟨k⟩

n (z) immediately follows from that of zAn−2(z). This
completes the proof.

Now we can prove Theorem 5.1.
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Proof of Theorem 5.1. By Theorems 5.2 and 5.3, for any positive integer
n ≥ 2 and any nonnegative integer ℓ ≤ n, the polynomial P ⟨ℓ⟩

n (z) is weakly
Hurwitz stable. By (26) and Theorem 1.5, we obtain that Dℓ

n(z) has only
real zeros. This completes the proof of Theorem 5.1.

6 Affine descent generating polynomials of type
D

The aim of this section is to prove that D̃n(z) has only real zeros for any
n ≥ 3. Our main result is as follows.

Theorem 6.1. Let Qn(z) be defined as in (4). Then both QO
n (z) = D̃n(z)/z

and QE
n (z) have only real and non-positive zeros and moreover QO

n (z) ⪯
QE

n (z). Consequently, Qn(z) is weakly Hurwitz stable.

Before proving Theorem 6.1, let us first note several lemmas which will
be used later. The first result is due to Haglund, Ono, and Wagner [23].

Lemma 6.2 ([23, Lemma 8]). Let f1(z), . . . , fm(z) be real-rooted polynomi-
als with nonnegative coefficients, and let a1, . . . , am ≥ 0 and b1, . . . , bm ≥
0 be such that aibi+1 ≥ biai+1 for all 1 ≤ i ≤ m − 1. If the sequence
(f1(z), . . . , fm(z)) is pairwise interlacing, then

m∑
i=1

aifi(z) ⪯
m∑
i=1

bifi(z).

The second result is easy to prove, which might be considered a well-
known result.

Lemma 6.3 ([9, Lemma 2.3], [39, Proposition 3.5]). Let g(z) and {fi(z)}ni=1

be real-rooted polynomials with positive leading coefficients, and let F (z) =
f1(z) + f2(z) + · · ·+ fn(z). Then

(1) if fi(z) ⪯ g(z) for each 1 ≤ i ≤ n, then F (z) is real-rooted with
F (z) ⪯ g(z);

(2) if g(z) ⪯ fi(z) for each 1 ≤ i ≤ n, then F (z) is real-rooted with
g(z) ⪯ F (z).
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The third result gives an expression of QE
n (z) in terms of Tn−1,i(z), as

well as that of QO
n (z).

Lemma 6.4. We have

QE
n (z) =

n−2∑
j=0

(
(n− j − 1)z + j + 1

)(
Tn−1,j(z) + Tn−1,n−1+j(z)

)
, (28)

zQO
n (z) =

n−2∑
j=0

(
(n− j − 1)z + j + 1

)(
zTn−1,j(z) + Tn−1,n−1+j(z)

)
. (29)

Proof. By (3), we have

QE
n (z) = 2Dn(z)− nB̃n−1(z)

= Tn+1,0(z)− nTn,n(z) (by (8) and (9))

=
2n−1∑
i=0

Tn,i − nTn,n(z). (by (6))

Note that, by (6), for each 0 ≤ i ≤ n− 1 there holds

Tn,i(z) = z
i−1∑
j=0

Tn−1,j(z) +
2n−3∑
j=i

Tn−1,j(z),

and for each n ≤ i ≤ 2n− 1 there holds

Tn,i(z) = z
i−2∑
j=0

Tn−1,j(z) +
2n−3∑
j=i−1

Tn−1,j(z).

Thus

QE
n (z) =

n−1∑
i=0

(
z

i−1∑
j=0

Tn−1,j(z) +
2n−3∑
j=i

Tn−1,j(z)

)

+
2n−1∑
i=n

(
z

i−2∑
j=0

Tn−1,j(z) +
2n−3∑
j=i−1

Tn−1,j(z)

)

− n

(
z

n−2∑
j=0

Tn−1,j(z) +
2n−3∑
j=n−1

Tn−1,j(z)

)
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=
n−1∑
i=0

i−1∑
j=0

zTn−1,j(z) +
n−1∑
i=0

2n−3∑
j=i

Tn−1,j(z)

+
2n−1∑
i=n

i−2∑
j=0

zTn−1,j(z) +
2n−1∑
i=n

2n−3∑
j=i−1

Tn−1,j(z)

−
n−2∑
j=0

nzTn−1,j(z)−
n−2∑
j=0

nTn−1,n−1+j(z).

For the above four double summations, we have

n−1∑
i=0

i−1∑
j=0

zTn−1,j(z) =
n−2∑
j=0

n−1∑
i=j+1

zTn−1,j(z) =
n−2∑
j=0

(n− j − 1)zTn−1,j(z),

n−1∑
i=0

2n−3∑
j=i

Tn−1,j(z) =
n−1∑
i=0

n−2∑
j=i

Tn−1,j(z) +
n−1∑
i=0

2n−3∑
j=n−1

Tn−1,j(z)

=
n−2∑
j=0

j∑
i=0

Tn−1,j(z) +
n−1∑
i=0

n−2∑
j=0

Tn−1,n−1+j(z)

=
n−2∑
j=0

(j + 1)Tn−1,j(z) +
n−2∑
j=0

nTn−1,n−1+j(z),

2n−1∑
i=n

i−2∑
j=0

zTn−1,j(z) =
2n−1∑
i=n

n−2∑
j=0

zTn−1,j(z) +
2n−1∑
i=n

i−2∑
j=n−1

zTn−1,j(z)

=
n−2∑
j=0

nzTn−1,j(z) +
2n−3∑
j=n−1

2n−1∑
i=j+2

zTn−1,j(z)

=
n−2∑
j=0

nzTn−1,j(z) +
2n−3∑
j=n−1

(2n− j − 2)zTn−1,j(z)

=
n−2∑
j=0

nzTn−1,j(z) +
n−2∑
j=0

(n− 1− j)zTn−1,n−1+j(z),

2n−1∑
i=n

2n−3∑
j=i−1

Tn−1,j(z) =
2n−3∑
j=n−1

j+1∑
i=n

Tn−1,j(z) =
n−2∑
j=0

(j + 1)Tn−1,n−1+j(z).
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Therefore,

QE
n (z) =

n−2∑
j=0

(
(n− j − 1)z + j + 1

)(
Tn−1,j(z) + Tn−1,n−1+j(z)

)
as desired. The second formula can be proved in the same manner. This
completes the proof.

Lemma 6.4 implies that both QE
n (z) and QO

n (z) are polynomials in z with
nonnegative coefficients. By Theorem 2.3, to show that QO

n (z) ⪯ QE
n (z), or

equivalently QE
n (z) ⪯ zQO

n (z), it suffices to prove both QE
n (z) and zQE

n (z)
are compatible with zQO

n (z). Equivalently, we only need to show that both

QE
n (z) + czQO

n (z)

and
czQE

n (z) + zQO
n (z)

have only real zeros for any c ≥ 0. If for any c ≥ 0 we let (K
⟨c⟩
n,i(z))

2n−1
i=0 be

the polynomial sequence given by

K
⟨c⟩
n,i(z) =

{
Tn,i(z) + cTn,n+i(z), if 0 ≤ i ≤ n− 1

czTn,i−n(z) + Tn,i(z), if n ≤ i ≤ 2n− 1
(30)

and let (L
⟨c⟩
n,i(z))

2n−1
i=0 be the polynomial sequence given by

L
⟨c⟩
n,i(z) =

{
K

⟨1⟩
n,i (z) + cK

⟨1⟩
n,n+i(z), if 0 ≤ i ≤ n− 1

czK
⟨1⟩
n,i−n(z) +K

⟨1⟩
n,i (z), if n ≤ i ≤ 2n− 1

(31)

then, by Lemma 6.4, we have

QE
n (z) + czQO

n (z) =
n−2∑
j=0

(
(n− j − 1)z + j + 1

)
L
⟨c⟩
n−1,j(z), (32)

czQE
n (z) + zQO

n (z) =
n−2∑
j=0

(
(n− j − 1)z + j + 1

)
L
⟨c⟩
n−1,n−1+j(z). (33)

Before proving that both QE
n (z) + czQO

n (z) and czQE
n (z) + zQO

n (z) have
only real zeros, let us note the following interesting result.
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Theorem 6.5. For c ≥ 0, n ≥ 4 and 0 ≤ i ≤ 2n− 1, we have

K
⟨c⟩
n,i(z) = z

⌈n−1
n

i⌉−1∑
j=0

K
⟨c⟩
n−1,j(z) +

2n−3∑
j=⌈n−1

n
i⌉
K

⟨c⟩
n−1,j(z) (34)

and

L
⟨c⟩
n,i(z) = z

⌈n−1
n

i⌉−1∑
j=0

L
⟨c⟩
n−1,j(z) +

2n−3∑
j=⌈n−1

n
i⌉
L
⟨c⟩
n−1,j(z), (35)

where K
⟨c⟩
n,i(z) and L

⟨c⟩
n,i(z) are defined by (30) and (31) respectively.

Proof. We first prove (34). We use some matrix techniques to give a proof.
Let

Kn = (K
⟨c⟩
n,0(z), K

⟨c⟩
n,1(z), . . . , K

⟨c⟩
n,2n−1(z))

t,

Tn = (Tn,0(z), Tn,1(z), . . . , Tn,2n−1(z))
t,

where the symbol t denotes the matrix transpose. From (30) it follows that

Kn =

(
In cIn
zIn cIn

)
Tn, (36)

where In is the identity matrix of order n. Note that the recurrence relation
(6) can be rewritten as

Tn,i(z) = z

i−1∑
j=0

Tn−1,j(z) +
2n−3∑
j=i

Tn−1,j(z),

Tn,n+i(z) = z
n+i−2∑
j=0

Tn−1,j(z) +
2n−3∑

j=n+i−1

Tn−1,j(z),

where 0 ≤ i ≤ n− 1. Therefore, we get

Tn =

(
A B
zB A

)
Tn−1, (37)
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where

A =


1 1 · · · 1
z 1 · · · 1
z z · · · 1
... ... ...
z z · · · z


n×(n−1)

and B is an n× (n− 1) matrix with all entries equal to 1. One can compute
that(

In cIn
czIn In

)(
A B
zB A

)
=

(
A+ czB cA+B
czA+ zB A+ czB

)

=

(
A B
zB A

)(
In−1 cIn−1

czIn−1 In−1

)
. (38)

Combining (36), (37), and (38), we obtain

Kn =

(
A B
zB A

)
Kn−1,

which is equivalent to (34). The proof of (35) can be done exactly in the
same way. This completes the proof.

With the above recurrence relation, we obtain a result analogous to The-
orem 2.5.
Theorem 6.6. For n ≥ 4 and c ≥ 0, both (K

⟨c⟩
n,i(z))

2n−1
i=0 and (L

⟨c⟩
n,i(z))

2n−1
i=0

are pairwise interlacing, where K
⟨c⟩
n,i(z) and L

⟨c⟩
n,i(z) are defined by (30) and

(31) respectively.

Proof. We first prove the case of (K⟨c⟩
n,i(z))

2n−1
i=0 . We may assume that c > 0

since (K
⟨0⟩
n,i (z))

2n−1
i=0 is just (Tn,i(z))

2n−1
i=0 . We use induction on n. For n = 4,

by using (30), we can directly compute the polynomials K⟨c⟩
4,i (z) for 0 ≤ i ≤ 7.

The eight polynomials are listed below:

K
⟨c⟩
4,0(z) = (10c+ 2)z3 + (28c+ 22)z2 + (10c+ 22)z + 2,
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K
⟨c⟩
4,1(z) = (14c+ 4)z3 + (28c+ 24)z2 + (6c+ 20)z,

K
⟨c⟩
4,2(z) = (20c+ 6)z3 + (24c+ 28)z2 + (4c+ 14)z,

K
⟨c⟩
4,3(z) = 2cz4 + (22c+ 10)z3 + (22c+ 28)z2 + (2c+ 10)z,

K
⟨c⟩
4,4(z) = 2cz4 + (22c+ 10)z3 + (22c+ 28)z2 + (2c+ 10)z,

K
⟨c⟩
4,5(z) = 4cz4 + (24c+ 14)z3 + (20c+ 28)z2 + 6z,

K
⟨c⟩
4,6(z) = 6cz4 + (28c+ 20)z3 + (14c+ 24)z2 + 4z,

K
⟨c⟩
4,7(z) = (10c+ 2)z4 + (28c+ 22)z3 + (10c+ 22)z2 + 2z.

To prove that K
⟨c⟩
4,i (z) ⪯ K

⟨c⟩
4,j (z) for any 0 ≤ i < j ≤ 7, by Theorem 1.5 it

suffices to show that zK
⟨c⟩
4,i (z

2) + K
⟨c⟩
4,j (z

2) is weakly Hurwitz stable for any
i < j with i, j ∈ {0, 1, 2, 3, 5, 6}. Let

Hi,j(z) =
zK

⟨c⟩
4,i (z

2) +K
⟨c⟩
4,j (z

2)

zmi,j
,

where mi,j is the largest nonnegative integer k such that

zk | (zK⟨c⟩
4,i (z

2) +K
⟨c⟩
4,j (z

2)).

We proceed to show that Hi,j(z) is Hurwitz stable for any i < j with i, j ∈
{0, 1, 2, 3, 5, 6}. By Theorem 1.4, we only need to show that all the Hurwitz
determinants of Hi,j(z) are positive for any c > 0. It is straightforward to
compute these Hurwitz determinants with the aid of a computer. As shown
in the appendix, for any i < j with i, j ∈ {0, 1, 2, 3, 5, 6}, all the Hurwitz
determinants of Hi,j(z) are polynomials in c with nonnegative coefficients,
and hence are positive for c > 0. This establishes the weak Hurwitz stability
of zK

⟨c⟩
4,i (z

2) + K
⟨c⟩
4,j (z

2). Thus we get the desired result for n = 4. Then,
by Theorems 2.4 and 6.5, we obtain the pairwise interlacing property of
(K

⟨c⟩
n,i(z))

2n−1
i=0 for any n ≥ 4.

For the case of (L
⟨c⟩
n,i(z))

2n−1
i=0 , we can directly compute the polynomials

L
⟨c⟩
4,i(z) for 0 ≤ i ≤ 7. The eight polynomials are listed below:

L
⟨c⟩
4,0(z) = 2cz4 + (32c+ 12)z3 + (50c+ 50)z2 + (12c+ 32)z + 2,
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L
⟨c⟩
4,1(z) = 4cz4 + (38c+ 18)z3 + (48c+ 52)z2 + (6c+ 26)z,

L
⟨c⟩
4,2(z) = 6cz4 + (48c+ 26)z3 + (38c+ 52)z2 + (4c+ 18)z,

L
⟨c⟩
4,3(z) = (12c+ 2)z4 + (50c+ 32)z3 + (32c+ 50)z2 + (2c+ 12)z,

L
⟨c⟩
4,4(z) = (12c+ 2)z4 + (50c+ 32)z3 + (32c+ 50)z2 + (2c+ 12)z,

L
⟨c⟩
4,5(z) = (18c+ 4)z4 + (52c+ 38)z3 + (26c+ 48)z2 + 6z,

L
⟨c⟩
4,6(z) = (26c+ 6)z4 + (52c+ 48)z3 + (18c+ 38)z2 + 4z,

L
⟨c⟩
4,7(z) = 2cz5 + (32c+ 12)z4 + (50c+ 50)z3 + (12c+ 32)z2 + 2z.

To prove that L
⟨c⟩
4,i(z) ⪯ L

⟨c⟩
4,j(z) for any 0 ≤ i < j ≤ 7, by Theorem 1.5 it

suffices to show that zL⟨c⟩
4,i(z

2)+L
⟨c⟩
4,j(z

2) is weakly Hurwitz stable for any i < j
with i, j ∈ {0, 1, 2, 3, 5, 6}. Similarly, for any i < j with i, j ∈ {0, 1, 2, 3, 5, 6},
let ni,j be the largest nonnegative integer k such that

zk | (zL⟨c⟩
4,i(z

2) + L
⟨c⟩
4,j(z

2)).

Let

H̃i,j(z) =
zL

⟨c⟩
4,i(z

2) + L
⟨c⟩
4,j(z

2)

zni,j
.

Now it suffices to show that H̃i,j(z) is Hurwitz stable for any i < j with
i, j ∈ {0, 1, 2, 3, 5, 6}. As shown in the appendix, each Hurwitz determinant
of H̃i,j(z) is a product of some polynomial in c with nonnegative coefficients
and some even power of (c− 1), and hence it is positive for c ̸= 0 and c ̸= 1.
Therefore, the polynomial zL⟨c⟩

4,i(z
2) + L

⟨c⟩
4,j(z

2) is weakly Hurwitz stable for
any 0 ≤ i < j ≤ 7 and c ̸= 0, 1. While for c = 0 or c = 1 we can directly
check the pairwise interlacing property of (L⟨c⟩

4,i(z))
7
i=0. Again by Theorems

2.4 and 6.5, we obtain the pairwise interlacing property of (L⟨c⟩
n,i(z))

2n−1
i=0 for

any n ≥ 4. This completes the proof.

Now we are in the position to prove Theorem 6.1.
Proof of Theorem 6.1. As discussed before, we only need to prove that both
QE

n (z) + czQO
n (z) and czQE

n (z) + zQO
n (z) have only real zeros for any c ≥ 0.
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By Theorem 6.6, we know that, for any n ≥ 4, both (L
⟨c⟩
n−1,j(z))

n−2
j=0 and

(L
⟨c⟩
n−1,j(z))

2n−3
j=n−1 are pairwise interlacing. Let m = n−1 and define ai = n−i,

bi = i and fi(z) = L
⟨c⟩
n−1,i−1(z) for 1 ≤ i ≤ n − 1 in Theorem 6.2. Since

aibi+1 − biai+1 = n > 0, it is immediate that
n−1∑
i=1

(n− i)L
⟨c⟩
n−1,i−1(z) ⪯

n−1∑
i=1

i L
⟨c⟩
n−1,i−1(z).

Since all the zeros of these two polynomials are real and nonpositive, we get
n−1∑
i=1

iL
⟨c⟩
n−1,i−1(z) ⪯ z

n−1∑
i=1

(n− i)L
⟨c⟩
n−1,i−1(z).

Further, by Lemma 6.3, we know that
∑n−1

i=1

(
(n − i)z + i

)
L
⟨c⟩
n−1,i−1(z) has

only real zeros. Thus by (32) the polynomial QE
n (z) + czQO

n (z) has only real
zeros for any c ≥ 0. To prove that czQE

n (z) + zQO
n (z) has only real zeros for

any c ≥ 0, by virtue of (33), the same arguments as before apply except that
taking fi(z) = L

⟨c⟩
n−1,n−2+i(z) for 1 ≤ i ≤ n−1 in Lemma 6.2. This completes

the proof.
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Appdendix

In this section we shall list all Hurwitz determinants which are used in the
proof of Theorem 6.6.

The following table presents a list of the Hurwitz determinants of Hi,j(z)
for any i < j with i, j ∈ {0, 1, 2, 3, 5, 6}.

(i, j) Hi,j(z) ∆k(Hi,j(z))

(0, 1)
(10c+2)z6+(14c+4)z5+(28c+22)z4

+(28c+24)z3+(10c+22)z2+(6c+20)z+2

∆1 = 14c + 4,∆2 = 4
(
28c2 + 31c + 10

)
,

∆3 = 96
(
21c3 + 41c2 + 30c + 8

)
,

∆4 = 192
(
32c4 + 71c3 + 67c2 + 34c + 8

)
,

∆5 = 36864c2(c + 1)3, ∆6 = 73728c2(c + 1)3.
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(i, j) Hi,j(z) ∆k(Hi,j(z))

(0, 2)
(10c+2)z6+(20c+6)z6+(28c+22)z4

+(24c+28)z3+(10c+22)z2+(4c+14)z+2

∆1 = 20c + 6, ∆2 = 4
(
80c2 + 70c + 19

)
,

∆3 = 32
(
140c3 + 240c2 + 171c + 47

)
,

∆4 = 64
(
240c4 + 640c3 + 906c2 + 693c + 211

)
,

∆5 = 6144(c + 1)3
(
10c2 + 5c + 19

)
,

∆6 = 12288(c + 1)3
(
10c2 + 5c + 19

)
.

(0, 3)
2cz7+(10c+2)z6+(22c+10)z5+(28c+22)z4

+(22c+28)z3+(10c+22)z2+(2c+10)z+2

∆1 = 10c + 2, ∆2 = 4
(
41c2 + 25c + 5

)
,

∆3 = 8
(
324c3 + 401c2 + 205c + 41

)
,

∆4 = 576
(
49c4 + 101c3 + 94c2 + 45c + 9

)
,

∆5 = 1152
(
144c5 + 445c4 + 641c3

+530c2 + 245c + 49
)
,

∆6 = 331776(c + 1)4
(
c2 + c + 1

)
,

∆7 = 663552(c + 1)4
(
c2 + c + 1

)
.

(0, 5)
4cz7+(10c+2)z6+(24c+14)z5+(28c+22)z4

+(20c+28)z3+(10c+22)z2+6z+2

∆1 = 10c + 2, ∆2 = 4
(
32c2 + 25c + 7

)
,

∆3 = 8
(
248c3 + 372c2 + 245c + 63

)
,

∆4 = 64
(
240c4 + 556c3 + 609c2 + 360c + 91

)
,

∆5 = 128
(
1200c5 + 4080c4

+6218c3 + 5469c2 + 2802c + 647
)
,

∆6 = 12288(c + 1)3
(
25c2 + 20c + 19

)
,

∆7 = 24576(c + 1)3
(
25c2 + 20c + 19

)
.

(0, 6)
6cz7+(10c+2)z6+(28c+20)z5+(28c+22)z4

+(14c+24)z3+(10c+22)z2+4z+2

∆1 = 10c + 2, ∆2 = 4
(
28c2 + 31c + 10

)
,

∆3 = 8
(
292c3 + 552c2 + 387c + 98

)
,

∆4 = 192
(
32c4 + 71c3 + 67c2 + 34c + 8

)
,

∆5 = 384
(
160c5 + 448c4 + 453c3 + 193c2 + 38c + 8

)
,

∆6 = 73728c2(c + 1)3, ∆7 = 147456c2(c + 1)3.

(1, 2)
(14c+4)z5+(20c+6)z4+(28c+24)z3

+(24c+28)z2+(6c+20)z+(4c+14)

∆1 = 20c + 6, ∆2 = 32
(
7c2 + 5c + 1

)
,

∆3 = 64
(
64c3 + 82c2 + 41c + 8

)
, ∆4 = 3072(c + 1)4,

∆5 = 6144(c + 1)4(2c + 7).

(1, 3)
2cz6+(14c+4)z5+(22c+10)z4+(28c+24)z3

+(22c+28)z2+(6c+20)z+(2c+10)

∆1 = 14c + 4, ∆2 = 4
(
63c2 + 45c + 10

)
,

∆3 = 32
(
91c3 + 117c2 + 66c + 16

)
,

∆4 = 64
(
647c4 + 1150c3 + 975c2 + 500c + 124

)
,

∆5 = 6144(c + 1)3
(
19c2 + 5c + 10

)
,

∆6 = 12288(c + 1)3
(
19c3 + 100c2 + 35c + 50

)
.

(1, 5)
4cz6+(14c+4)z5+(24c+14)z4+(28c+24)z3

+(20c+28)z2+(6c+20)z+6

∆1 = 14c + 4, ∆2 = 28
(
8c2 + 7c + 2

)
,

∆3 = 64
(
42c3 + 68c2 + 49c + 14

)
,

∆4 = 384
(
72c4 + 147c3 + 154c2 + 98c + 28

)
,

∆5 = 55296(c + 1)3
(
3c2 + c + 2

)
,

∆6 = 331776(c + 1)3
(
3c2 + c + 2

)
.

(1, 6)
6cz6+(14c+4)z5+(28c+20)z4+(28c+24)z3

+(14c+24)z2+(6c+20)z+4

∆1 = 14c + 4, ∆2 = 8
(
28c2 + 31c + 10

)
,

∆3 = 192
(
21c3 + 41c2 + 30c + 8

)
,

∆4 = 768
(
32c4 + 71c3 + 67c2 + 34c + 8

)
,

∆5 = 147456c2(c + 1)3, ∆6 = 589824c2(c + 1)3.

(2, 3)
2cz6+(20c+6)z5+(22c+10)z4+(24c+28)z3

+(22c+28)z2+(4c+14)z+(2c+10)

∆1 = 20c + 6, ∆2 = 4
(
98c2 + 69c + 15

)
,

∆3 = 96
(
8c3 + 18c2 + 19c + 7

)
,

∆4 = 192
(
8c4 + 54c3 + 191c2 + 210c + 73

)
,

∆5 = 36864(c + 1)3, ∆6 = 73728(c + 1)3(c + 5).

(2, 5)
4cz6+(20c+6)z5+(24c+14)z4+(24c+28)z3

+(20c+28)z2+(4c+14)z+6

∆1 = 20c + 6, ∆2 = 12
(
32c2 + 26c + 7

)
,

∆3 = 192
(
8c3 + 18c2 + 19c + 7

)
,

∆4 = 1152
(
8c3 + 46c2 + 57c + 21

)
,

∆5 = 147456(c + 1)3, ∆6 = 884736(c + 1)3.
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(i, j) Hi,j(z) ∆k(Hi,j(z))

(2, 6)
6cz6+(20c+6)z5+(28c+20)z4+(24c+28)z3

+(14c+24)z2+(4c+14)z+4

∆1 = 20c + 6, ∆2 = 8
(
52c2 + 50c + 15

)
,

∆3 = 64
(
76c3 + 158c2 + 130c + 39

)
,

∆4 = 256
(
108c4 + 326c3 + 493c2 + 380c + 114

)
,

∆5 = 55296(c + 1)3
(
2c2 + c + 3

)
,

∆6 = 221184(c + 1)3
(
2c2 + c + 3

)
.

(3, 5)
2cz7+4cz6+(22c+10)z5+(24c+14)z4

+(22c+28)z3+(20c+28)z2+(2c+10)z+6

∆1 = 4c, ∆2 = 4c(10c + 3),

∆3 = 24c
(
32c2 + 26c + 7

)
,

∆4 = 192c
(
8c3 + 18c2 + 19c + 7

)
,

∆5 = 1152c
(
8c3 + 46c2 + 57c + 21

)
,

∆6 = 73728c(c + 1)3, ∆7 = 442368c(c + 1)3.

(3, 6)
2cz7+6cz6+(22c+10)z5+(28c+20)z4

+(22c+28)z3+(14c+24)z2+(2c+10)z+4

∆1 = 6c, ∆2 = 4c(19c + 5),

∆3 = 16c
(
94c2 + 85c + 25

)
,

∆4 = 64c
(
211c3 + 432c2 + 345c + 100

)
,

∆5 = 256c
(
456c4 + 1403c3 + 1926c2 + 1305c + 350

)
,

∆6 = 12288c(c + 1)3
(
19c2 + 20c + 25

)
,

∆7 = 49152c(c + 1)3
(
19c2 + 20c + 25

)
.

(5, 6)
4cz7+6cz6+(24c+14)z5+(28c+20)z4

+(20c+28)z3+(14c+24)z2+6z+4

∆1 = 6c, ∆2 = 4c(8c + 1),

∆3 = 16c
(
32c2 + 20c + 5

)
,

∆4 = 128c
(
24c3 + 43c2 + 29c + 7

)
,

∆5 = 512c
(
84c4 + 240c3 + 278c2 + 151c + 32

)
,

∆6 = 12288c(c + 1)4,

∆7 = 49152c(c + 1)4.

We proceed to list the Hurwitz determinants of H̃i,j(z) for any i < j with
i, j ∈ {0, 1, 2, 3, 5, 6}.

(i, j) H̃i,j(z) ∆k(H̃i,j(z))

(0, 1)

2cz8+4cz7+(32c+12)z6

+(38c+18)z5+(50c+50)z4+(48c+52)z3

+(12c+32)z2+(6c+26)z+2

∆1 = 4c,∆2 = 4c(13c + 3),

∆3 = 24c
(
65c2 + 42c + 9

)
,

∆4 = 48c
(
208c3 + 373c2 + 266c + 69

)
,

∆5 = 4608c(c + 1)2
(
33c2 + 56c + 25

)
,

∆6 = 9216c(c + 1)2
(
64c3 + 169c2 + 160c + 53

)
,

∆7 = 3538944c(c + 1)6,

∆8 = 7077888c(c + 1)6.

(0, 2)

2cz8+6cz7+(32c+12)z6

+(48c+26)z5+(50c+50)z4+(38c+52)z3

+(12c+32)z2+(4c+18)z+2

∆1 = 6c, ∆2 = 4c(24c + 5),

∆3 = 8c
(
408c2 + 285c + 65

)
,

∆4 = 16c
(
4352c3 + 6488c2 + 3825c + 845

)
,

∆5 = 256c
(
5440c4 + 12997c3 + 13593c2 + 7075c + 1495

)
,

∆6 = 512c
(
12288c5 + 39872c4 + 62735c3

+58395c2 + 30425c + 6725
)
,

∆7 = 393216c(c + 1)4
(
64c2 + 35c + 85

)
,

∆8 = 786432c(c + 1)4
(
64c2 + 35c + 85

)
.

(0, 3)

2cz8+(12c+2)z7+(32c+12)z6

+(50c+32)z5+(50c+50)z4+(32c+50)z3

+(12c+32)z2+(2c+12)z+2

∆1 = 12c + 2, ∆2 = 4
(
71c2 + 36c + 6

)
,

∆3 = 8
(
971c3 + 1002c2 + 426c + 71

)
,

∆4 = 16
(
10728c4 + 18719c3 + 14610c2 + 5826c + 971

)
,

∆5 = 2304
(
1027c5 + 2706c4 + 3323c3

+2317c2 + 894c + 149
)
,

∆6 = 4608
(
3456c6 + 13109c5 + 23358c4

+24781c3 + 16283c2 + 6162c + 1027
)
,

∆7 = 31850496(c + 1)5
(
c2 + c + 1

)
,

∆8 = 63700992(c + 1)5
(
c2 + c + 1

)
.

30



(i, j) H̃i,j(z) ∆k(H̃i,j(z))

(0, 5)

2cz8+(18c+4)z7+(32c+12)z6

+(52c+38)z5+(50c+50)z4+(26c+48)z3

+(12c+32)z2+6z+2

∆1 = 18c + 4, ∆2 = 472c2 + 268c + 48,

∆3 = 8
(
1160c3 + 1301c2 + 633c + 128

)
,

∆4 = 16
(
13584c4 + 23096c3 + 19257c2

+9013c + 1856) ,

∆5 = 256
(
6528c5 + 16733c4 + 21137c3

+16995c2 + 8375c + 1856
)
,

∆6 = 512
(
39168c6 + 153216c5 + 272383c4

+295147c3 + 214545c2 + 97693c + 20416
)
,

∆7 = 393216(c + 1)4
(
85c2 + 35c + 64

)
,

∆8 = 786432(c + 1)4
(
85c2 + 35c + 64

)
.

(0, 6)

2cz8+(26c+6)z7+(32c+12)z6

+(52c+48)z5+(50c+50)z4+(18c+38)z3

+(12c+32)z2+4z+2

∆1 = 26c + 6, ∆2 = 8
(
91c2 + 51c + 9

)
,

∆3 = 24
(
208c3 + 373c2 + 266c + 69

)
,

∆4 = 48
(
2144c4 + 7296c3 + 9657c2 + 5802c + 1329

)
,

∆5 = 4608(c + 1)2
(
64c3 + 169c2 + 160c + 53

)
,

∆6 = 9216(c + 1)2
(
384c4 + 1408c3 + 2005c2

+1304c + 325) ,

∆7 = 3538944(c + 1)6, ∆8 = 7077888(c + 1)6.

(1, 2)

4cz7+6cz6+(38c+18)z5

+(48c+26)z4+(48c+52)z3+(38c+52)z2

+(6c+26)z+(4c+18)

∆1 = 6c, ∆2 = 4c(9c + 1),

∆3 = 8c
(
114c2 + 63c + 13

)
,

∆4 = 128c
(
103c3 + 135c2 + 69c + 13

)
,

∆5 = 256c
(
1570c4 + 3195c3 + 2751c2 + 1153c + 195

)
,

∆6 = 196608c(c + 1)5, ∆7 = 393216c(c + 1)5(2c + 9).

(1, 3)

4cz7+(12c+2)z6+(38c+18)z5

+(50c+32)z4+(48c+52)z3+(32c+50)z2

+(6c+26)z+(2c+12)

∆1 = 12c + 2, ∆2 = 4
(
64c2 + 41c + 9

)
,

∆3 = 8
(
928c3 + 1157c2 + 595c + 118

)
,

∆4 = 128
(
928c4 + 1831c3 + 1623c2 + 745c + 145

)
,

∆5 = 256
(
10208c5 + 27053c4 + 32859c3

+23009c2 + 9293c + 1698
)
,

∆6 = 196608(c + 1)4
(
32c2 + 19c + 17

)
,

∆7 = 393216(c + 1)4
(
32c3 + 211c2 + 131c + 102

)
.

(1, 5)

4cz7+(18c+4)z6+(38c+18)z5

+(52c+38)z4+(48c+52)z3+(26c+48)z2

+(6c+26)z+6

∆1 = 18c + 4, ∆2 = 476c2 + 324c + 72,

∆3 = 8
(
1384c3 + 1881c2 + 1071c + 238

)
,

∆4 = 128
(
1497c4 + 3031c3 + 2961c2 + 1557c + 346

)
,

∆5 = 768
(
3456c5 + 9015c4 + 11417c3 + 9135c2

+4491c + 998) ,

∆6 = 5308416(c + 1)4
(
3c2 + c + 2

)
,

∆7 = 31850496(c + 1)4
(
3c2 + c + 2

)
.

(1, 6)

4cz7+(26c+6)z6+(38c+18)z5

+(52c+48)z4+(48c+52)z3+(18c+38)z2

+(6c+26)z+4

∆1 = 26c + 6, ∆2 = 12
(
65c2 + 42c + 9

)
,

∆3 = 48
(
208c3 + 373c2 + 266c + 69

)
,

∆4 = 4608(c + 1)2
(
33c2 + 56c + 25

)
,

∆5 = 18432(c + 1)2
(
64c3 + 169c2 + 160c + 53

)
,

∆6 = 7077888(c + 1)6, ∆7 = 28311552(c + 1)6.

(2, 3)

6cz7+(12c+2)z6+(48c+26)z5

+(50c+32)z4+(38c+52)z3+(32c+50)z2

+(4c+18)z+(2c+12)

∆1 = 12c + 2, ∆2 = 4
(
69c2 + 54c + 13

)
,

∆3 = 8
(
1329c3 + 1788c2 + 933c + 182

)
,

∆4 = 768
(
53c4 + 102c3 + 98c2 + 54c + 13

)
,

∆5 = 1536
(
325c5 + 492c4 + 394c3 + 474c2

+421c + 134) ,

∆6 = 589824(c − 1)2(c + 1)4,

∆7 = 1179648(c − 1)2(c + 1)4(c + 6).

(2, 5)

6cz7+(18c+4)z6+(48c+26)z5

+(52c+38)z4+(38c+52)z3+(26c+48)z2

+(4c+18)z+6

∆1 = 18c + 4, ∆2 = 8
(
69c2 + 54c + 13

)
,

∆3 = 48
(
400c3 + 561c2 + 310c + 65

)
,

∆4 = 3072
(
53c4 + 102c3 + 98c2 + 54c + 13

)
,

∆5 = 18432
(
64c5 + 69c4 + 14c3 + 54c2 + 86c + 33

)
,

∆6 = 4718592(c − 1)2(c + 1)4,

∆7 = 28311552(c − 1)2(c + 1)4.
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(i, j) H̃i,j(z) ∆k(H̃i,j(z))

(2, 6)

6cz7+(26c+6)z6+(48c+26)z5

+(52c+48)z4+(38c+52)z3+(18c+38)z2

+(4c+18)z+4

∆1 = 26c + 6, ∆2 = 52
(
18c2 + 13c + 3

)
,

∆3 = 8
(
3224c3 + 4956c2 + 3042c + 702

)
,

∆4 = 128
(
2842c4 + 7605c3 + 9009c2 + 5239c + 1209

)
,

∆5 = 512
(
5184c5 + 17990c4 + 31707c3 + 32895c2

+18473c + 4263) ,

∆6 = 5308416(c + 1)4
(
2c2 + c + 3

)
,

∆7 = 21233664(c + 1)4
(
2c2 + c + 3

)
.

(3, 5)

(12c+2)z7+(18c+4)z6+(50c+32)z5

+(52c+38)z4+(32c+50)z3+(26c+48)z2

+(2c+12)z+6

∆1 = 18c + 4, ∆2 = 4
(
69c2 + 54c + 13

)
,

∆3 = 24
(
400c3 + 561c2 + 310c + 65

)
,

∆4 = 768
(
53c4 + 102c3 + 98c2 + 54c + 13

)
,

∆5 = 4608
(
64c5 + 69c4 + 14c3 + 54c2 + 86c + 33

)
,

∆6 = 589824(c − 1)2(c + 1)4, ∆7 = 3538944(c − 1)2(c + 1)4.

(3, 6)

(12c+2)z7+(26c+6)z6+(50c+32)z5

+(52c+48)z4+(32c+50)z3+(18c+38)z2

+(2c+12)z+4

∆1 = 26c + 6, ∆2 = 676c2 + 452c + 96,

∆3 = 16
(
1196c3 + 1641c2 + 929c + 204

)
,

∆4 = 128
(
1345c4 + 3481c3 + 4071c2 + 2359c + 544

)
,

∆5 = 512
(
3264c5 + 12179c4 + 22091c3 + 22581c2

+12245c + 2720) ,

∆6 = 196608(c + 1)4
(
17c2 + 19c + 32

)
,

∆7 = 786432(c + 1)4
(
17c2 + 19c + 32

)
.

(5, 6)

(18c+4)z7+(26c+6)z6+(52c+38)z5

+(52c+48)z4+(26c+48)z3+(18c+38)z2

+6z+4

∆1 = 26c + 6, ∆2 = 4
(
104c2 + 57c + 9

)
,

∆3 = 16
(
780c3 + 804c2 + 337c + 57

)
,

∆4 = 128
(
384c4 + 973c3 + 1029c2 + 519c + 103

)
,

∆5 = 512
(
1728c5 + 6720c4 + 11147c3 + 9651c2

+4305c + 785) ,

∆6 = 196608(c + 1)5, ∆7 = 786432(c + 1)5.
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